Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

This module provides a convenient API for verifying query parameters.

Project description

Qval | Query params validation library

CircleCI Documentation Status codecov PyPI version Code style: black


$ pip install qval

Basic usage

You can use Qval both as a function and as a decorator. The function validate() accepts 3 positional arguments and 1 named:

def validate(
    # Request instance. Must be a dictionary or implement request interface.
    request: Union[Request, Dict[str, str]],
    # Dictionary of (param_name -> `Validator()` object).
    validators: Dict[str, Validator] = None,
    # Provide true if you want to access all parameters of the request in the context.
    box_all: bool = True,
    # Factories that will be used to convert parameters to python objects (param -> [callable[str] => object]).
) -> QueryParamValidator: 

Imagine you have a RESTful calculator with an endpoint called /api/divide. You can use validate() to automatically convert parameters to python objects and then validate them:

from qval import validate

def division_view(request):
    GET /api/divide?
    param a     : int
    param b     : int, nonzero
    param token : string, length = 12
    Example: GET /api/divide?a=10&b=2&token=abcdefghijkl -> 200, {"answer": 5}
    # Parameter validation occurs in the context manager.
    # If validation fails or user code throws an error, context manager
    # will raise InvalidQueryParamException or APIException respectively.
    # In Django Rest Framework, these exceptions will be processed and result 
    # in error codes (400 and 500) on the client side.
    params = (
        # `a` and `b` must be integers
        # Note: in order to get a nice error message on the client side,
        # you factory should raise either ValueError or TypeError
        validate(request, a=int, b=int)
        # `b` must be anything but zero
        # The `transform` callable will be applied to parameter before the check.
        # In this case we'll get `token`'s length and check if it is equal to 12.
        .eq("token", 12, transform=len)
    # validation starts here
    with params as p:
        return Response({"answer": p.a // p.b})
// GET /api/divide?a=10&b=2&token=abcdefghijkl
// Browser:
  "answer": 5

Sending b = 0 to this endpoint will result in the following message on the client side:

// GET /api/divide?a=10&b=0&token=abcdefghijkl
  "error": "Invalid `b` value: 0."

If you have many parameters and custom validators, it's better to use the @qval() decorator:

from decimal import Decimal
from qval import Validator, QvalValidationError

def price_validator(price: int) -> bool:
    A predicate to validate `price` query parameter.
    Provides custom error message.
    if price <= 0:
        # If price does not match our requirements, we raise QvalValidationError() with a custom message.
        # This exception will be handled in the context manager and will be reraised
        # as InvalidQueryParamException() [HTTP 400].
        raise QvalValidationError(f"Price must be greater than zero, got \'{price}\'.")
    return True

purchase_factories = {"price": Decimal, "item_id": int, "token": None}
purchase_validators = {
    "token": Validator(lambda x: len(x) == 12),
    # Validator(p) can be omitted if there is only one predicate:
    "item_id": lambda x: x >= 0,
    "price": price_validator,

from qval import qval
from validators import *

# Any function or method wrapped with `qval()` must accept request as 
# either first or second argument, and parameters as last.
@qval(purchase_factories, purchase_validators)
def purchase_view(request, params):
    GET /api/purchase?
    param item_id : int, positive
    param price   : float, greater than zero
    param token   : string, len == 12

    Example: GET /api/purchase?item_id=1&price=5.8&token=abcdefghijkl
    print(f"{params.item_id} costs {params.price}$.")

Framework-specific instructions

  1. Django Rest Framework works straight out of the box. Simply add @qval() to your views or use validate() inside.

  2. For Django without DRF you may need to add the exception handler to settings.MIDDLEWARE. Qval attempts to do it automatically if DJANO_SETTINGS_MODULE is set. Otherwise you'll see the following message:

    WARNING:root:Unable to add APIException middleware to the MIDDLEWARE list. Django does not 
    support APIException handling without DRF integration. Define DJANGO_SETTINGS_MODULE or 
    add 'qval.framework_integration.HandleAPIExceptionDjango' to the MIDDLEWARE list.

    Take a look at the plain Django example here.

  3. If you are using Flask, you will need to setup exception handlers:

    from flask import Flask
    from qval.framework_integration import setup_flask_error_handlers
    app = Flask(__name__)

    Since request in Flask is a global object, you may want to curry @qval() before usage:

    from flask import request
    from qval import qval_curry
    # Firstly, curry `qval()`
    qval = qval_curry(request)
    # Then use it as a decorator.
    # Note: you view now must accept request as first argument
    def view(request, params): 

    Check out the full Flask example in examples/

    You can run the example using the command below:

    $ PYTHONPATH=. FLASK_APP=examples/ flask run
  4. Similarly to Flask, with Falcon you will need to setup error handlers:

    import falcon
    from qval.framework_integration import setup_falcon_error_handlers
    app = falcon.API()

    Full Falcon example can be found here: examples/

    Use the following command to run the app:

    $ PYTHONPATH=. python examples/


Refer to documentation for more verbose descriptions and auto-generated API docs. You can also look at the tests to get the idea how the stuff below works.


Qval supports configuration via config files and environmental variables. If DJANGO_SETTINGS_MODULE or SETTINGS_MODULE are defined, the specified config module will be used. Otherwise, all lookups would be done in os.environ.

Supported variables:

  • QVAL_MAKE_REQUEST_WRAPPER = myapp.myfile.my_func. Customizes behaviour of the make_request() function, which is applied to all incoming requests, then the result is passed to qval.qval.QueryParamValidator. The provided function must accept request and return object that supports request interface (see qval.framework_integration.DummyReqiest).
    For example, the following code adds logging to each make_request() call:

    # app/
    def my_wrapper(f):
        def wrapper(request):
            print(f"Received new request: {request}")
            return f(request)
        return wrapper

    You also need to execute export QVAL_MAKE_REQUEST_WRAPPER=app.utils.my_wrapper in your console or to add it to the config file.

  • QVAL_REQUEST_CLASS = @qval() will use it to determine which argument is a request. If you have a custom request class that implements qval.framework_integration.DummyRequest interface, provide it with this variable.

  • QVAL_LOGGERS = [mylogger.factory, ...] | mylogger.factory. List of paths or a path to a factory callable. Specified callable must return object with the Logger interface. See section logging for more info.


Qval uses a global object called log acting as singleton when reporting errors. By default, logging.getLogger function is used as a factory on each call. You can provide your own factory (see configuration) or disable logging. Example error message:

An error occurred during the validation or inside of the context: exc `<class 'OverflowError'>` ((34, 'Numerical result out of range')).
| Parameters: <QueryDict: {'a': ['2.2324'], 'b': ['30000000']}>
| Body      : b''
| Exception:
Traceback (most recent call last):
  File "<path>/qval/", line 338, in inner
    return f(*args, params, **kwargs)
  File "<path>/examples/django-example/app/", line 46, in pow_view
    return JsonResponse({"answer": params.a ** params.b})
OverflowError: (34, 'Numerical result out of range')
Internal Server Error: /api/pow
[19/Nov/2018 07:03:15] "GET /api/pow?a=2.2324&b=30000000 HTTP/1.1" 500 102

Import the log object from qval and configure as you need:

from qval import log
# For instance, disable logging:

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for qval, version 0.3.3
Filename, size File type Python version Upload date Hashes
Filename, size qval-0.3.3-py2.py3-none-any.whl (44.9 kB) File type Wheel Python version py2.py3 Upload date Hashes View hashes
Filename, size qval-0.3.3.tar.gz (32.1 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page