My personal utilities library.
Project description
qwertypy
My personal utilities library.
Installation
pip install qwertypy
Upgrade
pip install --upgrade qwertypy
Usage
- Try on colab: Click here
qwertypy.greetings
import qwertypy.greetings as qpyGreetings
print(qpyGreetings.hello())
qwertypy.tickertape
qwertypy.tickertape.companies
import qwertypy.tickertape.companies as ttCompanies
topCompanies = ttCompanies.getTopCompanies()
print("TOP = ", len(topCompanies))
# print("ALL = ", len(ttCompanies.getAllCompanies()))
ttName = "reliance-industries-RELI"
companyInfo = ttCompanies.getCompanyInfo(ttName)
print(companyInfo)
qwertypy.tickertape.financials
import qwertypy.tickertape.financials as ttFinancials
ttName = "reliance-industries-RELI"
for statementType in ttFinancials.statementTypes:
statement = ttFinancials.getStatement(ttName, statementType)
print(statementType, type(statement))
ttName = "reliance-industries-RELI"
statementType = ttFinancials.statementTypes["income"]
statement = ttFinancials.getStatement(ttName, statementType)
yearsAndValues = ttFinancials.getYearsAndValues(statement, "incDps")
print(yearsAndValues)
qwertypy.data_analysis
qwertypy.data_analysis.regression
import qwertypy.data_analysis.regression as qpyRegression
xTrain = [1, 2, 3, 4, 5, 6]
yTrain = [2, 4, 6, 8, 10, 12]
model = qpyRegression.QpyLinearRegression(xTrain, yTrain)
model.train()
yPredict = model.getPrediction()
print("yPredict: ", yPredict)
xPredict2 = [10, 11]
yExpected = [20, 22]
yPredict2 = model.getPrediction(xPredict2)
print("yPredict2: ", yPredict2)
qwertypy.data_plots
qwertypy.data_plots.trend_plot
import qwertypy.data_analysis.regression as qpyRegression
import qwertypy.data_plots.trend_plot as qpyTrendPlot
import qwertypy.tickertape.companies as ttCompanies
import qwertypy.tickertape.financials as ttFinancials
ttName = "reliance-industries-RELI"
companyInfo = ttCompanies.getCompanyInfo(ttName)
statementType = ttFinancials.statementTypes["income"]
statement = ttFinancials.getStatement(ttName, statementType)
yearsAndValues = ttFinancials.getYearsAndValues(statement, "incTrev")
xTrain = [int(x) for x in list(yearsAndValues.keys())]
yTrain = [yearsAndValues[x] for x in yearsAndValues]
model = qpyRegression.QpyLinearRegression(xTrain, yTrain)
model.train()
yPredict = [round(val, 2) for val in model.getPrediction()]
qpyTrendPlot.trendPlot(
xTrain, yTrain,
"Years", "Revenue (INR Cr.)", companyInfo["name"],
trendValues = yPredict,
legends = ["Revenue trend", "Revenue (INR Cr.)"],
text = "text", watermark = "qwertypy",
# saveToFile = "testImage.jpg",
# showValues = True
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
qwertypy-0.5.1.tar.gz
(6.7 kB
view details)
File details
Details for the file qwertypy-0.5.1.tar.gz
.
File metadata
- Download URL: qwertypy-0.5.1.tar.gz
- Upload date:
- Size: 6.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8b252aa65c87f8e0d5604a0a8e10a4265374e2a59a340aaae8f32592d412305 |
|
MD5 | e64213a7a03e67ccefeb12826c3b37ae |
|
BLAKE2b-256 | 892460dfc1d6eecb2994217b98decdf13611a855b1e015ed2d96dcb73ed9f8b9 |