Skip to main content

My personal python utilities library.

Project description

qwertypy

Python utilities library for financial utilities, data analysis, visualization and DSA.

Quick links

Installation

pip install qwertypy

Upgrade

pip install --upgrade qwertypy

Usage

qwertypy.greetings

import qwertypy.greetings as qpyGreetings

print(qpyGreetings.hello())

qwertypy.tickertape

qwertypy.tickertape.companies

import qwertypy.tickertape.companies as ttCompanies

topCompanies = ttCompanies.getTopCompanies()
print("TOP = ", len(topCompanies))
# print("ALL = ", len(ttCompanies.getAllCompanies()))

ttName = "reliance-industries-RELI"
companyInfo = ttCompanies.getCompanyInfo(ttName)
print(companyInfo)

qwertypy.tickertape.financials

import qwertypy.tickertape.financials as ttFinancials

ttName = "reliance-industries-RELI"
for statementType in ttFinancials.statementTypes:
    statement = ttFinancials.getStatement(ttName, statementType)
    print(statementType, type(statement))

ttName = "reliance-industries-RELI"
statementType = ttFinancials.statementTypes["income"]
statement = ttFinancials.getStatement(ttName, statementType)
yearsAndValues = ttFinancials.getYearsAndValues(statement, "incDps")
print(yearsAndValues)

qwertypy.data_analysis

qwertypy.data_analysis.regression

import qwertypy.data_analysis.regression as qpyRegression

xTrain = [1, 2, 3, 4, 5, 6]
yTrain = [2, 4, 6, 8, 10, 12]
model = qpyRegression.QpyLinearRegression(xTrain, yTrain)
model.train()
yPredict = model.getPrediction()
print("yPredict: ", yPredict)

xPredict2 = [10, 11]
yExpected = [20, 22]
yPredict2 = model.getPrediction(xPredict2)
print("yPredict2: ", yPredict2)

qwertypy.data_plots

qwertypy.data_plots.trend_plot

import random

import qwertypy.data_plots.trend_plot as qpyTrendPlot

xValues = [i for i in range(10)]
yValues = [random.randint(1, 10) for _ in range(10)]
xTicks = ["xTick" + str(i+1) for i in range(10)]
trendValues = list(yValues)
qpyTrendPlot.trendPlot(
    xValues, yValues,
    xTicks = xTicks,
    rotateXTicks = 90,
    xLabel = "xLabel",
    yLabel = "yLabel",
    plotTitle = "plotTitle",
    trendValues = trendValues,
    legends = ["trendLegend", "barLegend"],
    text = "text",
    textBackground = "red",
    watermark = "watermark",
    showValues = True,
    # saveToFile = "testImage.jpg"
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qwertypy-0.5.9.tar.gz (7.5 kB view details)

Uploaded Source

File details

Details for the file qwertypy-0.5.9.tar.gz.

File metadata

  • Download URL: qwertypy-0.5.9.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for qwertypy-0.5.9.tar.gz
Algorithm Hash digest
SHA256 d540e6b4a5fcda7adbec6ad46d7dfaf2e27dd66b25ce5bdcfccbf56de8eb283c
MD5 f5ebc4ec3a1624b976b7a9ce9f80a9af
BLAKE2b-256 44c38be8cc9eb67e74ba189d4f2f31d1258b4b431b5bd680568f8c0323731834

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page