Skip to main content

My personal python utilities library.

Project description

qwertypy

Python utilities library for financial utilities, data analysis, visualization and DSA.

Quick links

Installation

pip install qwertypy

Upgrade

pip install --upgrade qwertypy

Usage

qwertypy.greetings

import qwertypy.greetings as qpyGreetings

print(qpyGreetings.hello())

qwertypy.tickertape

qwertypy.tickertape.companies

import qwertypy.tickertape.companies as ttCompanies

topCompanies = ttCompanies.getTopCompanies()
print("TOP = ", len(topCompanies))
# print("ALL = ", len(ttCompanies.getAllCompanies()))

ttName = "reliance-industries-RELI"
companyInfo = ttCompanies.getCompanyInfo(ttName)
print(companyInfo)

qwertypy.tickertape.financials

import qwertypy.tickertape.financials as ttFinancials

ttName = "reliance-industries-RELI"
for statementType in ttFinancials.statementTypes:
    statement = ttFinancials.getStatement(ttName, statementType)
    print(statementType, type(statement))

ttName = "reliance-industries-RELI"
statementType = ttFinancials.statementTypes["income"]
statement = ttFinancials.getStatement(ttName, statementType)
yearsAndValues = ttFinancials.getYearsAndValues(statement, "incDps")
print(yearsAndValues)

qwertypy.data_analysis

qwertypy.data_analysis.regression

import qwertypy.data_analysis.regression as qpyRegression

xTrain = [1, 2, 3, 4, 5, 6]
yTrain = [2, 4, 6, 8, 10, 12]
model = qpyRegression.QpyLinearRegression(xTrain, yTrain)
model.train()
yPredict = model.getPrediction()
print("yPredict: ", yPredict)

xPredict2 = [10, 11]
yExpected = [20, 22]
yPredict2 = model.getPrediction(xPredict2)
print("yPredict2: ", yPredict2)

qwertypy.data_plots

qwertypy.data_plots.trend_plot

import random

import qwertypy.data_plots.trend_plot as qpyTrendPlot

xValues = [i for i in range(10)]
yValues = [random.randint(1, 10) for _ in range(10)]
xTicks = ["xTick" + str(i+1) for i in range(10)]
trendValues = list(yValues)
qpyTrendPlot.trendPlot(
    xValues, yValues,
    xTicks = xTicks,
    rotateXTicks = 90,
    xLabel = "xLabel",
    yLabel = "yLabel",
    plotTitle = "plotTitle",
    trendValues = trendValues,
    legends = ["trendLegend", "barLegend"],
    text = "text",
    textBackground = "red",
    watermark = "watermark",
    showValues = True,
    # saveToFile = "testImage.jpg"
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qwertypy-0.6.0.tar.gz (8.2 kB view details)

Uploaded Source

File details

Details for the file qwertypy-0.6.0.tar.gz.

File metadata

  • Download URL: qwertypy-0.6.0.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for qwertypy-0.6.0.tar.gz
Algorithm Hash digest
SHA256 24337e2a8240cdd287595250eb9ce9580f3191f856d21bfeff9a150b5c5f2f4e
MD5 164a3349f8dc5472c5c92fe4495bf4ca
BLAKE2b-256 b1f823dff5ade81b8fc653d96ce121f62401cd0a9d059f01143685f97eb88875

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page