Skip to main content

My personal python utilities library.

Project description

qwertypy

Python utilities library for financial utilities, data analysis, visualization and DSA.

Quick links

Installation

pip install qwertypy

Upgrade

pip install --upgrade qwertypy

Usage

qwertypy.greetings

import qwertypy.greetings as qpyGreetings

print(qpyGreetings.hello())

qwertypy.tickertape

qwertypy.tickertape.companies

import qwertypy.tickertape.companies as ttCompanies

topCompanies = ttCompanies.getTopCompanies()
print("TOP = ", len(topCompanies))
# print("ALL = ", len(ttCompanies.getAllCompanies()))

ttName = "reliance-industries-RELI"
companyInfo = ttCompanies.getCompanyInfo(ttName)
print(companyInfo)

qwertypy.tickertape.financials

import qwertypy.tickertape.financials as ttFinancials

ttName = "reliance-industries-RELI"
for statementType in ttFinancials.statementTypes:
    statement = ttFinancials.getStatement(ttName, statementType)
    print(statementType, type(statement))

ttName = "reliance-industries-RELI"
statementType = ttFinancials.statementTypes["income"]
statement = ttFinancials.getStatement(ttName, statementType)
yearsAndValues = ttFinancials.getYearsAndValues(statement, "incDps")
print(yearsAndValues)

qwertypy.data_analysis

qwertypy.data_analysis.regression

import qwertypy.data_analysis.regression as qpyRegression

xTrain = [1, 2, 3, 4, 5, 6]
yTrain = [2, 4, 6, 8, 10, 12]
model = qpyRegression.QpyLinearRegression(xTrain, yTrain)
model.train()
yPredict = model.getPrediction()
print("yPredict: ", yPredict)

xPredict2 = [10, 11]
yExpected = [20, 22]
yPredict2 = model.getPrediction(xPredict2)
print("yPredict2: ", yPredict2)

qwertypy.data_plots

qwertypy.data_plots.trend_plot

import random

import qwertypy.data_plots.trend_plot as qpyTrendPlot

xValues = [i for i in range(10)]
yValues = [random.randint(1, 10) for _ in range(10)]
xTicks = ["xTick" + str(i+1) for i in range(10)]
trendValues = list(yValues)
qpyTrendPlot.trendPlot(
    xValues, yValues,
    xTicks = xTicks,
    rotateXTicks = 90,
    xLabel = "xLabel",
    yLabel = "yLabel",
    plotTitle = "plotTitle",
    trendValues = trendValues,
    legends = ["trendLegend", "barLegend"],
    text = "text",
    textBackground = "red",
    watermark = "watermark",
    showValues = True,
    # saveToFile = "testImage.jpg"
)

qwertypy.dsa

qwertypy.dsa.single_source_shortest_path

from collections import defaultdict

from qwertypy.dsa.single_source_shortest_path import dijkstra

n = 9
edges = [
    (0, 1, 4),
    (0, 7, 8),
    (1, 7, 11),
    (1, 2, 8),
    (7, 8, 7),
    (7, 6, 1),
    (2, 8, 2),
    (8, 6, 6),
    (2, 3, 7),
    (2, 5, 4),
    (6, 5, 2),
    (3, 5, 14),
    (3, 4, 9),
    (5, 4, 10)
]

graph = defaultdict(lambda: defaultdict(int))
for u, v, d in edges:
    graph[u][v] = graph[v][u] = d

print(dijkstra(graph, 0, n))
print(dijkstra(graph, 1, n))

qwertypy.dsa.all_pairs_shortest_path

from collections import defaultdict

from qwertypy.dsa.all_pairs_shortest_path import fw

edges = [
    [1, 2, 3],
    [1, 4, 7],
    [2, 1, 8],
    [2, 3, 2],
    [3, 1, 5],
    [3, 4, 1],
    [4, 1, 2]
]
graph = defaultdict(dict)
for u, v, cost in edges:
    graph[u-1][v-1] = cost
fw(graph, len(graph))

qwertypy.dsa.strongly_connected_components

from collections import defaultdict

from qwertypy.dsa.strongly_connected_components import tarjan

edges = [[0,1],[2,0],[1,3],[3,4],[4,5],[5,6],[6,4]]
graph = defaultdict(list)
for u, v in edges:
    graph[u].append(v)

low = tarjan(graph)
print("low: ", low)

scc = defaultdict(list)
for key in low:
    scc[low[key]].append(key)

print("Strongly connected components: ", list(scc.values()))

bridges = []
for u, v in edges:
    if scc[u] != scc[v]:
        bridges.append([u, v])

print("Bridges: ", bridges)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qwertypy-1.0.0.tar.gz (9.3 kB view details)

Uploaded Source

File details

Details for the file qwertypy-1.0.0.tar.gz.

File metadata

  • Download URL: qwertypy-1.0.0.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for qwertypy-1.0.0.tar.gz
Algorithm Hash digest
SHA256 bed42445e245da0067aa146294fef01cb5c0d440188342e395e68fec5c810b9f
MD5 0582c264beb0aee4119cea4741e2bbdd
BLAKE2b-256 f68518fca9810d0cccf9f3a1b2cb4626df44e152ec79558e75ae322f4640cb2b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page