Skip to main content

Regularized methods for efficient ranking in networks

Project description

license PyPI version PyPI downloads Build Status Open Source Love

rSpringRank implements a collection of regularized, convex models (+solvers) that allow the inference of hierarchical structure in a directed network, which exists due to dominance, social status, or prestige. Specifically, this work leverages the time-varying structure and/or the node metadata present in the data set.

This is the software repository behind the paper:

  • Tzu-Chi Yen and Stephen Becker, Regularized methods for efficient ranking in networks, in preparation.
  • For full documentation, please visit this site.
  • General Q&A, ideas, or other things, please visit Discussions.
  • Software-related bugs, issues, or suggestions, please use Issues.

Installation

rSpringRank is available on PyPI. It also depends on graph-tool. We recommend using conda to manage packages.

conda create --name rSpringRank-dev -c conda-forge graph-tool
conda activate rSpringRank-dev
pip install rSpringRank

Example

# Import the library
import rSpringRank as sr

# Load a data set
g = sr.datasets.us_air_traffic()

# Create a model
model = sr.optimize.rSpringRank(method="annotated")

# Fit the model: We decided to analyze the `state_abr` nodal metadata,
# We may inspect `g.list_properties()` for other metadata to analyze.
result = model.fit(g, alpha=1, lambd=0.5, goi="state_abr")

# Now, result["primal"] should have the rankings. We can compute a summary.
summary = sr.compute_summary(g, "state_abr", primal_s=result["primal"])

Let's plot the rankings, via sr.plot_hist(summary). Note that most of the node catetories are regularized to have the same mean ranking.

A histogram of four ranking groups, where most of the metadata share the same mean ranking.

We provided a summary via sr.print_summary_table(summary).

  +-------+-------+--------+-----------------------------------------+--------+---------+
  | Group | #Tags | #Nodes | Members                                 |   Mean |     Std |
  +-------+-------+--------+-----------------------------------------+--------+---------+
  | 1     |     5 |    825 | CA, WA, OR, TT, AK                      |  0.047 | 1.1e-02 |
  | 2     |     4 |    206 | TX, MT, PA, ID                          | -0.006 | 4.2e-03 |
  | 3     |    43 |   1243 | MI, IN, TN, NC, VA, IL, CO, WV, MA, WI, | -0.035 | 4.3e-03 |
  |       |       |        | SC, KY, MO, MD, AZ, PR, LA, UT, MN, GA, |        |         |
  |       |       |        | MS, HI, DE, NM, ME, NJ, NE, VT, CT, SD, |        |         |
  |       |       |        | IA, NV, ND, AL, OK, AR, NH, RI, OH, FL, |        |         |
  |       |       |        | KS, NY, WY                              |        |         |
  | 4     |     1 |      4 | VI                                      | -0.072 | 0.0e+00 |
  +-------+-------+--------+-----------------------------------------+--------+---------+

The result suggests that states such as CA, WA, or AK are significantly more popular than other states.

Data sets

We have a companion repo—rSpringRank-data—for data sets used in the paper. Which are:

In addendum, we have provided the rSpringRank.datasets submodule to load data sets hosted by other repositories, such as the Netzschleuder. See the docs for more information.

Development

The library uses pytest to ensure correctness. The test suite depends on mosek and gurobi.

License

rSpringRank is open-source and licensed under the GNU Lesser General Public License v3.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rspringrank-0.2.28.tar.gz (39.4 kB view hashes)

Uploaded Source

Built Distribution

rspringrank-0.2.28-py3-none-any.whl (47.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page