Skip to main content

Tiny package to make 'race' barplots using plotly

Project description

Test Python package PyPI version Python 3.8 Python 3.9 Python 3.10

Making race plots with Plotly!

Motivation

Bar race plots, barchart race plots or simply race plots are very common when evaluating rankings over time. Python plotting is not the most user friendly and whenever I've wanted to make race plots I have ended up with tonnes of code for what is a simple plot in the end. I wish to remove that headache for many users that simply want to make quick plot and then move on.

Usage

Installation

raceplotly can be installed from pip.The only dependencies are pandas and plotly.

pip install raceplotly

Basic documentation

The package only contains one module called barplot. This module takes the following arguments at initialisation:

  • df: (type: pandas.DataFrame) dataframe from which to query data
  • item_column: (type: string) Name of column describing the items to be ranked (e.g. countries, corporations, names of people...)
  • value_column: (type: string) Name of column describing the value to be used for ranking (e.g. GDP, population, volume of sales...)
  • time_column: (type: string) Name of column describing the time variable. This must be a sequence (e.g. years, days). Support of Date format has not been tested yet.
  • item_color: (type: string) [OPTIONAL ATTRIBUTE] Name of column describing the color for different categories (e.g. colors = {'Category 1': 'rgba(0, 76, 109, 1)', 'Category 2': 'rgb(208, 210, 211)'}...) [DEFAULT = Random Color]
  • top_entries: (type: numeric) [OPTIONAL ATTRIBUTE] Number of top entries to display (e.g. 5 for top 5 for any given time period...) [DEFAULT = 10]

The barplot object contains one main method:

  • plot(title, orientation, item_label, value_label, time_label, frame_duration, date_format):
    • title: (type: string) Main title of the plot (static by default)
    • orientation: (type: string -> 'horizontal' or 'vertical') whether bars grow upwards ('vertical') or rightwards ('horizontal')
    • initial_frame: (type: numeric or string) Should either match one of the values from the time_column or be provided as min or max, in which case the initial frame would correspond to the minimum or maximum value of the time_column.
    • item_label: (type: string) Title of the axis corresponding to the item values
    • value_label: (type: string) Title of the axis corresponding to the value
    • time_label: (type: string) Title for the time axis which appears in each frame next to the formmated date/time variable
    • frame_duration: (type: int -> default 500) Frame and transition duration time in milliseconds
    • date_format: (type: str) Format for the displayed date/time, should be compatible with strftime format, see strftime reference.

Example plot: Top 10 crops from 1961 to 2018

See example notebooks under example/.

import pandas as pd
from raceplotly.plots import barplot

data = pd.read_csv('https://raw.githubusercontent.com/lc5415/raceplotly/main/example/dataset/FAOSTAT_data.csv')

my_raceplot = barplot(data,  item_column='Item', value_column='Value', time_column='Year')

my_raceplot.plot(item_label = 'Top 10 crops', value_label = 'Production quantity (tonnes)', frame_duration = 800)

Example with specified colors for different category.

See example notebooks under example/color.

import pandas as pd
from raceplotly.plots import barplot

data = pd.read_csv('https://raw.githubusercontent.com/lc5415/raceplotly/main/example/dataset/FAOSTAT_data.csv')

# To add specific color to the categories, a new dictionary with rgb values for each category has to be created.
# Assigning colors to the categories.
colors = {'Sugar cane': 'rgba(0, 76, 109, 1)',
          'Potatoes': 'rgb(208, 210, 211)',
          'Wheat': 'rgb(208, 210, 211)',
          'Rice, paddy':'rgba(66, 114, 146, 1)',
          'Maize':'rgba(40, 95, 127, 1)',
          'Sugar beet':'rgb(208, 210, 211)',
          'Rice, paddy (rice milled equivalent)':'rgb(208, 210, 211)',
          'Sweet potatoes':'rgb(208, 210, 211)',
          'Vegetables, fresh nes':'rgb(208, 210, 211)'}
# Default color for category will be assigned randomly if not specified explicitly

my_raceplot = barplot(data,  item_column='Item', value_column='Value', time_column='Year', item_color=colors)

# In this case color for 'Rice, paddy (rice milled equivalent)', 'Sugar beet' and 'Sweet potatoes' will be randomly assingned
# Default color for cateogry is black when color is not specifed explicitly

# Mapping the items with the color for the whole dataset.
data['color'] = data['Item'].map(colors)

my_raceplot = barplot(
	data,
	item_column='Item',
	value_column='Value',
	time_column='Year',
	item_color='color')

my_raceplot.plot(
	item_label = 'Top 10 crops',
	value_label = 'Production quantity (tonnes)',
	time_label = 'Year: ',
	## overwrites default `Date: `
	frame_duration = 800)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

raceplotly-0.1.7.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

raceplotly-0.1.7-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file raceplotly-0.1.7.tar.gz.

File metadata

  • Download URL: raceplotly-0.1.7.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.14

File hashes

Hashes for raceplotly-0.1.7.tar.gz
Algorithm Hash digest
SHA256 47460fa5b3ed3d673fab4fe399b4e96bc234b383225c2ca62584a8a8e33a3ce4
MD5 41e8ef313697b222c9e72134ceec4610
BLAKE2b-256 35576ff189537d5642c9932cd829e9ff7972bfac46707913ef1a12c706eaf324

See more details on using hashes here.

File details

Details for the file raceplotly-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: raceplotly-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.14

File hashes

Hashes for raceplotly-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 026c5ecfd178ebc68060e90ca3b4168004b0d32c5717b21c241984209f4a84a2
MD5 0706aa9b19335e085a19785b7a9921ff
BLAKE2b-256 5ae5b8cd80e4f85f33ae4e839e5d0d845ab337df9104e77dad059723477c0cbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page