Runner for Resource-Aware Data systems Tracker (radT) for automatically tracking and training machine learning software
Project description
radT
radT (Resource Aware Data science Tracker) is an extension to MLFlow that simplifies the collection and exploration of hardware metrics of machine learning and deep learning applications. Usually, collecting and processing all the required metrics for these workloads is a hassle. In contrast, RADT is easy to deploy and use, with minimal impact on both performance and time investment. The codebase of RADT is documented and easily expandable.
This work has been published at the SIGMOD workshop DEEM 2023: Data Management and Visualization for Benchmarking Deep Learning Training Systems
pip install radt
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.