RadText is a high-performance Python Radiology Text Analysis System.
Project description
Purpose
RadText is a high-performance Python Radiology Text Analysis System.
Prerequisites
- Python >= 3.6, <3.9
- Linux
- Java
# Set up environment
$ sudo apt-get install python3-dev build-essential default-java
Quickstart
The latest radtext releases are available over pypi.
Using pip, RadText releases are available as source packages and binary wheels. It is also generally recommended installing packages in a virtual environment to avoid modifying system state:
$ python -m venv venv
$ source venv/bin/activate
$ pip install -U pip setuptools wheel
$ pip install -U radtext
$ python -m spacy download en_core_web_sm
$ radtext-download --all
To see RadText’s pipeline in action, you can launch the Python interactive interpreter, and try the following commands:
import radtext
nlp = radtext.Pipeline()
with open('/PATH/TO/BIOC_FILE.xml') as fp:
doc = bioc.load(fp)
annotations = nlp(doc)
print(annotations)
RadText also supports command-line interfaces for specific NLP tasks (e.g., de-identification, sentence split, or named entity recognition).
$ radtext-deid --repl=X -i /path/to/input.xml -o /path/to/output.xml
$ radtext-ssplit -i /path/to/input.xml -o /path/to/output.xml
$ radext-ner spacy --radlex /path/to/Radlex4.1.xlsx -i /path/to/input.xml -o /path/to/output.xml
Documentation
You will find complete documentation at our Read the Docs site.
Contributing
You can find information about contributing to RadText at our Contribution page.
Acknowledgment
This work is supported by the National Library of Medicine under Award No. 4R00LM013001 and the NIH Intramural Research Program, National Library of Medicine.
You can find Acknowledgment information at our Acknowledgment page.
License
Copyright BioNLP Lab at Weill Cornell Medicine, 2022.
Distributed under the terms of the MIT license, RadText is free and open source software.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file radtext-1.0.dev8.tar.gz
.
File metadata
- Download URL: radtext-1.0.dev8.tar.gz
- Upload date:
- Size: 2.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.15.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 33334a889314a3490a8f0ace1e7f6d8bd67db5b5190a211df6320a462d61f448 |
|
MD5 | 681de9c623d894720385974156a86ec7 |
|
BLAKE2b-256 | fc2fd57217fa1ba796cf2849e7097d340b860613aa2037811a9455e771c0f7f4 |
File details
Details for the file radtext-1.0.dev8-py3-none-any.whl
.
File metadata
- Download URL: radtext-1.0.dev8-py3-none-any.whl
- Upload date:
- Size: 2.3 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.15.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 201f45271096047903497a9a3c776e57efa2acc8d48049e8244b6046e5df91ae |
|
MD5 | f97c68ca5c656517eb65891e688632d7 |
|
BLAKE2b-256 | f133ec9898909449a79c670724404f01d9b53f6395a21b39fd3fc7a221bcf3f6 |