Skip to main content

RAG Citation is an project that combines Retrieval-Augmented Generation (RAG) with automatic citation generation. This tool is designed to enhance the credibility of AI-generated content by providing relevant citations for the information used in generating responses.

Project description

RAG Citation: Enhancing Rag Pipeline with Automatic Citations (A Non-LLM Approach)

Project Overview

RAG Citation is an project that combines Retrieval-Augmented Generation (RAG) with automatic citation generation. This tool is designed to enhance the credibility of RAG-generated content by providing relevant citations for the information used in generating responses.

Key Features

  • Non-LLM Approach: Utilizes efficient algorithms and NLP techniques for citation generation, making it fast and lightweight.
  • Semantic Search: Identifies relevant source documents based on meaning and context rather than just keyword matching.
  • Named Entity Recognition: Extracts and returns relevant named entities from LLM-generated answers, such as people, organizations, money and dates.
  • Flexible Integration: Can be easily integrated into rag pipeline.
  • Hallucination (Beta) This beta feature identifies instances where the LLM-generated answer contains entities like ["DATE", "MONEY", "CARDINAL", "ORDINAL", "QUANTITY", "TIME"], but these entities cannot be found within the context. If such a mismatch occurs, it flags the result as a potential hallucination.

Quickstart

To get started with rag-citation, install it using pip and download the spacy model:

pip install rag-citation

To download the spacy model-sm

python -m spacy download en_core_web_sm

To download the spacy model-md

python -m spacy download en_core_web_md

To download the spacy model-lg

python -m spacy download en_core_web_lg

Here's a basic example demonstrating how to use the library:

from rag_citation import CiteItem, Inference
import uuid

## Sample context from vectorDB or semantic search
documents = [
    "Elon MuskCEO, Tesla$221.6B$439M (0.20%)Real Time Net Worthas of 8/6/24Reflects change since 5 pm ET of prior trading day. 1 in the world todayPhoto by Martin Schoeller for ForbesAbout Elon MuskElon Musk cofounded six companies, including electric car maker Tesla, rocket producer SpaceX and tunneling startup Boring Company.He owns about 12% of Tesla excluding options, but has pledged more than half his shares as collateral for personal loans of up to $3.5 billion.In early 2024, a Delaware judge voided Musk's 2018 deal to receive options equaling an additional 9% of Tesla.",
    "people in the world; as of August 2024[update], Forbes estimates his net worth to be US$241 billion.[3] Musk was born in Pretoria to model Maye and businessman and engineer Errol Musk, and briefly attended the University of Pretoria before immigrating to Canada at age 18, acquiring citizenship through his Canadian-born mother. Two years later, he matriculated at Queen's University at Kingston in Canada. Musk later transferred to the University of Pennsylvania and received bachelor's degrees in economics and physics."
]

## Example answer generated by an LLM
answer = "Elon Musk's net worth is estimated to be US$241 billion as of August 2024."

## Helper function to generate a UUID
def generate_uuid():
    return str(uuid.uuid4())

## Helper function to create context in the correct format
def format_document(documents):
    context = []
    for document in documents:
        context.append(
            {
                "source_id": generate_uuid(), 
                "document": document, 
                "meta": [{"meta-data": "some-info"}], 
            }
        )
    return context

context = format_document(documents)
cite_item = CiteItem(answer=answer, context=context)

## Initialize the Inference 
inference = Inference(spacy_model="sm", embedding_model="md")

## Get citation and other information
output = inference(cite_item)

print("------ Citation ------")
print(output.citation) 
print("------ Hallucination ------") 
print(output.hallucination) 
print("------ Missing Entities ------")
print(output.missing) 

Output Explanation

print(output.citation)

[
  {
    "answer_sentences": "Elon Musk's net worth is estimated to be US$241 billion as of August 2024.",
    "cite_document": [
      {
        "document": "people in the world; as of August 2024[update], Forbes estimates his net worth to be US$241 billion.[3]",
        "source_id": "23d1f1f0-2afa-4749-8639-78ec685fd837",
        "entity": [
          {
            "word": "US$241 billion",
            "entity_name": "MONEY"
          },
          {
            "word": "August 2024",
            "entity_name": "DATE"
          }
        ],
        "meta": [
          {
            "url": "https://www.forbes.com/profile/elon-musk/",
            "chunk_id": "1eab8dd1ffa92906f7fc839862871ca5"
          }
        ]
      }
    ]
  }
]
Key Description Example
answer_sentences Textual information or sentences extracted as answers or relevant information related to the citation. "Elon Musk's net worth is estimated to be US$241 billion as of August 2024."
cite_document List of source documents used in the citation. Each document contains:
- document: Text from the source document. "people in the world; as of August 2024[update], Forbes estimates his net worth to be US$241 billion.[3]"
- source_id: Unique identifier for the source document. "6874d990-fedc-42bd-b0be-730bcdd59d26"
- entity: List of recognized entities in the document. Each entity contains:
- word: Recognized word or phrase. "US$241 billion"
- entity_name Type of the entity (e.g., MONEY, DATE). "MONEY"
- metaMetadata about the document: []
print(output.hallucination)

False

Key Description Example
hallucination Indicates if the output contains hallucinated information. false

print(output.missing)

[]

Key Description Example
missing List of entities expected but not found. ["$100 USD"]

Installation

From PyPI:

pip install rag-citation

From Source:

  1. Clone the repository:
    git clone https://github.com/your-username/rag-citation.git 
    cd rag-citation
    
  2. Install the dependencies:
    pip install -r requirements.txt 
    

Configuration

The Inference class can be configured with different models and settings:

  • spacy_model: The spaCy model used for named entity recognition (default: "en_core_web_sm"). To use different models, pass:

    • "sm" for en_core_web_sm
    • "md" for en_core_web_md
    • "lg" for en_core_web_lg You can download and install spaCy models here.
  • embedding_model: The sentence embedding model from the SentenceTransformers library used for semantic similarity (default: "all-mpnet-base-v2"). To use different models, pass:

    • "sm" for avsolatorio/GIST-small-Embedding-v0
    • "md" for avsolatorio/GIST-Embedding-v0
    • "lg" for avsolatorio/GIST-large-Embedding-v0 Install SentenceTransformers with: pip install -U sentence-transformers
      You can explore the models on Hugging Face.
  • therhold_value: The similarity threshold value for semantic matching (current default: 0.88). You can adjust this value as needed.

Contributing

We welcome contributions! Here’s how you can help:

  • Report Bugs: Submit issues on GitHub.
  • Suggest Features: Open an issue with your ideas.
  • Code Contributions: Fork, make changes, and submit a pull request.
  • Documentation: Update and enhance our docs.

License

This project is licensed under the MIT License.

Acknowledgements

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rag_citation-0.0.5.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

rag_citation-0.0.5-py3-none-any.whl (17.9 kB view details)

Uploaded Python 3

File details

Details for the file rag_citation-0.0.5.tar.gz.

File metadata

  • Download URL: rag_citation-0.0.5.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for rag_citation-0.0.5.tar.gz
Algorithm Hash digest
SHA256 bf95d81caa392c0581fb239c2651e183ff0c507c7c46212a37591a8e9fe63bd1
MD5 6a98189fdb0a83a5f31ebc7a94164ba3
BLAKE2b-256 99be491d67c1705f43b91f0f9ecab75149ea1dbf43f3a642b4ba75a6ff36aae4

See more details on using hashes here.

File details

Details for the file rag_citation-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for rag_citation-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 089db0540c96dfb4ccd3d041631a9c0c6b9fbc6fa4ca61d1e0f4eeb1e5ddf6b3
MD5 2093d7f8b67dd17a6581990f098aeacc
BLAKE2b-256 3240cdbed929060d9fd8087f39f674cad9f5ddaa5a863914402bd97208e5c978

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page