Skip to main content

A library for evaluating Retrieval-Augmented Generation (RAG) systems

Project description

RAG Evaluator

Overview

RAG Evaluator is a Python library for evaluating Retrieval-Augmented Generation (RAG) systems. It provides various metrics to evaluate the quality of generated text against reference text.

Installation

You can install the library using pip:

pip install rag-evaluator

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rag-evaluator-0.1.0.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

rag_evaluator-0.1.0-py3-none-any.whl (3.6 kB view details)

Uploaded Python 3

File details

Details for the file rag-evaluator-0.1.0.tar.gz.

File metadata

  • Download URL: rag-evaluator-0.1.0.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.0

File hashes

Hashes for rag-evaluator-0.1.0.tar.gz
Algorithm Hash digest
SHA256 f864f5dba24b7bcd804402626f529f29e07a4c07f020cab4a36bf87c277effea
MD5 d51b4a8f70be73e80cb20bb786726af7
BLAKE2b-256 6081350c7c08d3c4c3ed2e6b0a4f8b68e32c36956738b0d0517aee98c45211e9

See more details on using hashes here.

File details

Details for the file rag_evaluator-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for rag_evaluator-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 408873d18e35fbc0a62dd57567ae1f8f59188feea48f3b6f431bae3ec10ed55f
MD5 16f6e5ccda39bc35a0862e6b63439a1c
BLAKE2b-256 2f4d53a841c13280a9cc499cb2045c107cf54482f31b85e7ca4c476435201db0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page