Skip to main content

A command line utility to query websites using a local LLM

Project description

Rag WebQuery

rag-webquery.png

Description

rag_webquery is a command-line tool that allows you to use a local Large Language Model (LLM) to answer questions from website contents. The utility extracts all textual information from the desired URL, chunks it up, converts it to embeddings stored in an in-memory vector store, that's then used to find the most relevant information to use as context to answer the supplied question.

Requirements

  • Python: The utility is written in python so you'll need Python 3.9 or greater installed.
  • Ollama: To host the local LLMs you'll need to have Ollama running.
  • LLM(s): The LLM(s) that you want to answer your questions need to be downloaded (pulled) with Ollama.
  • GPU: A GPU is recommended but it will work with a CPU only system without one albeit slowly
  • RAM: Enough system RAM to run the selected model; the default model (Zephyr 7B) requires a minium of 8GB; 16GB system recommended.
  • OS: Ollama currently only runs on MacOS and Linux, Windows support coming soon.

By default rag-webquery uses the Zephyr model which is a fined tuned version of Mistral 7B. After Ollama is installed and running you need to download it with the following command:

ollama pull zephyr:latest

Ollama supports several other models that you can choose from in the library. If you want to use a model other than Zephyr, you'll need to pull it with Ollama and specify it with the rag-webquery '--model' flag.

Installation

Assuming you already have Python installed on your system, you can easily install it with pip with this command:

pip install -U rag_webquery

Usage

Usage documentation provided by the '--help' flag:

usage: rag-webquery [-h] [--model MODEL] [--base_url BASE_URL] [--chunk_size CHUNK_SIZE] [--chunk_overlap CHUNK_OVERLAP]
                    [--top_matches TOP_MATCHES] [--system SYSTEM] [--temp TEMP]
                    website question

Query a webpage with a local LLM

positional arguments:
  website               The website URL to retrieve data from
  question              The question to ask about the website's content

options:
  -h, --help            show this help message and exit
  --model MODEL         The model to use (default: zephyr:latest)
  --base_url BASE_URL   The base URL for the Ollama (default: http://localhost:11434)
  --chunk_size CHUNK_SIZE
                        The document token chunk size (default: 200)
  --chunk_overlap CHUNK_OVERLAP
                        The amount of chunk overlap (default: 50)
  --top_matches TOP_MATCHES
                        The number the of top matching document chunks to retrieve (default: 4)
  --system SYSTEM       The system message provided to the LLM
  --temp TEMP           The model temperature setting (default: 0.0)

Most basic usage:

rag-webquery https://en.wikipedia.org/wiki/Ukraine "What was holomodor? What was its root cause?"

Output:

### Answer:
The Holodomor was a major famine that took place in Soviet Ukraine during
1932 and 1933. It led to the death by starvation of millions of Ukrainians,
particularly peasants. The root cause of the Holodomor was the forced
collectivization of crops and their confiscation by Soviet authorities. This
policy aimed to centralize agricultural production but instead resulted in
widespread food shortages and devastating consequences for the local
population. Some countries have recognized this event as an act of genocide
perpetrated by Joseph Stalin and other Soviet notables.

More complicated usage:

In this example I'll be using the powerful "Mixtral 8x7B" model. First, I'll need to pull it via Ollama (if not already done previously):

ollama pull mixtral:latest 

Then I'll specify a custom system message that instructs the LLM to perform in the role of a data extraction expert that only responds with JSON formatted output. Then I ask it about Ukraine's demographics, which it will extract from the website contents and provide a JSON representation of.

rag-webquery https://en.wikipedia.org/wiki/Ukraine \
             "What are Ukraine's demographics?" \
             --model mixtral \
             --system "You are a data extraction expert. \
                        You take information and return a valid JSON document \
                        that captures the information " \
             --chunk_size 1500

Output:

{
    "Population": {
        "Estimated before 2022 Russian invasion": 41000000,
        "Decrease from 1993 to 2014": -6.6,
        "Percentage decrease": 12.8,
        "Urban population": 67,
        "Population density": 69.5,
        "Overall life expectancy at birth": 73,
        "Life expectancy at birth for males": 68,
        "Life expectancy at birth for females": 77.8
    },
    "Ethnic composition (2001 Census)": {
        "Ukrainians": 77.8,
        "Russians": 17.3,
        "Romanians and Moldovans": 0.8,
        "Belarusians": 0.6,
        "Crimean Tatars": 0.5,
        "Bulgarians": 0.4,
        "Hungarians": 0.3,
        "Poles": 0.3,
        "Other": 2
    },
    "Minority populations": {
        "Belarusians": 0.6,
        "Moldovans": 0.5,
        "Crimean Tatars": 0.5,
        "Bulgarians": 0.4,
        "Hungarians": 0.3,
        "Romanians": 0.3,
        "Poles": 0.3,
        "Jews": 0.3,
        "Armenians": 0.2,
        "Greeks": 0.2,
        "Tatars": 0.2,
        "Koreans": {
            "Estimate": "10-40000",
            "Location": "mostly in the south of the country"
        },
        "Roma": {
            "Estimate (official)": 47600,
            "Estimate (Council of Europe)": 260000
        }
    },
    "Internally displaced and refugees": {
        "Due to war in Donbas (late 2010s)": 1400000,
        "Due to Russian invasion (early 2022)": 4100000
    }
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rag_webquery-0.1.1.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

rag_webquery-0.1.1-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file rag_webquery-0.1.1.tar.gz.

File metadata

  • Download URL: rag_webquery-0.1.1.tar.gz
  • Upload date:
  • Size: 8.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.9.13 Darwin/22.6.0

File hashes

Hashes for rag_webquery-0.1.1.tar.gz
Algorithm Hash digest
SHA256 3c7f570c856a9b336cb10dd0b9f04170687cbbdce69b35584dc9dc4cf7ff5b5a
MD5 676411e386d9602fd5c42ae71978f329
BLAKE2b-256 e32f6248ca04be015fb369c061e7856b5fed1c358ddee886304791f48c07d017

See more details on using hashes here.

File details

Details for the file rag_webquery-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: rag_webquery-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.9.13 Darwin/22.6.0

File hashes

Hashes for rag_webquery-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4abfabaaa1a2c4c7d03259fba5252705e7e10deba654b8c9108f99216dd43b1d
MD5 625af146862b95874b4256e3ff032573
BLAKE2b-256 a1d7984fa1e3f4c98ee542682f7b1e4f2aadb44598e2e0e429f900797917a780

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page