No project description provided
Project description
Supercharge Your LLM Application Evaluations 🚀
Documentation | Quick start | Join Discord | NewsLetter | Careers
Objective metrics, intelligent test generation, and data-driven insights for LLM apps
Ragas is your ultimate toolkit for evaluating and optimizing Large Language Model (LLM) applications. Say goodbye to time-consuming, subjective assessments and hello to data-driven, efficient evaluation workflows. Don't have a test dataset ready? We also do production-aligned test set generation.
Key Features
- 🎯 Objective Metrics: Evaluate your LLM applications with precision using both LLM-based and traditional metrics.
- 🧪 Test Data Generation: Automatically create comprehensive test datasets covering a wide range of scenarios.
- 🔗 Seamless Integrations: Works flawlessly with popular LLM frameworks like LangChain and major observability tools.
- 📊 Build feedback loops: Leverage production data to continually improve your LLM applications.
:shield: Installation
Pypi:
pip install ragas
Alternatively, from source:
pip install git+https://github.com/explodinggradients/ragas
:fire: Quickstart
Evaluate your RAG with Ragas metrics
This is 4 main lines:
from ragas.metrics import LLMContextRecall, Faithfulness, FactualCorrectness
from langchain_openai.chat_models import ChatOpenAI
from ragas.llms import LangchainLLMWrapper
evaluator_llm = LangchainLLMWrapper(ChatOpenAI(model="gpt-4o"))
metrics = [LLMContextRecall(), FactualCorrectness(), Faithfulness()]
results = evaluate(dataset=eval_dataset, metrics=metrics, llm=evaluator_llm)
Find the complete RAG Evaluation Quickstart here: https://docs.ragas.io/en/latest/getstarted/rag_evaluation/
🖱️Click to see preview of RESULTS
user_input | retrieved_contexts | response | reference | context_recall | factual_correctness | faithfulness |
---|---|---|---|---|---|---|
What are the global implications of the USA Supreme Court ruling on abortion? | "- In 2022, the USA Supreme Court ... - The ruling has created a chilling effect ..." | The global implications ... Here are some potential implications: | The global implications ... Additionally, the ruling has had an impact beyond national borders ... | 1 | 0.47 | 0.516129 |
Which companies are the main contributors to GHG emissions ... ? | "- Fossil fuel companies ... - Between 2010 and 2020, human mortality ..." | According to the Carbon Majors database ... Here are the top contributors: | According to the Carbon Majors database ... Additionally, between 2010 and 2020, human mortality ... | 1 | 0.11 | 0.172414 |
Which private companies in the Americas are the largest GHG emitters ... ? | "The private companies responsible ... The largest emitter amongst state-owned companies ..." | According to the Carbon Majors database, the largest private companies ... | The largest private companies in the Americas ... | 1 | 0.26 | 0 |
Generate a test dataset for comprehensive RAG evaluation
What if you don't have the data for folks asking questions when they interact with your RAG system?
Ragas can help by generating synthetic test set generation -- where you can seed it with your data and control the difficulty, variety, and complexity.
🫂 Community
If you want to get more involved with Ragas, check out our discord server. It's a fun community where we geek out about LLM, Retrieval, Production issues, and more.
Contributors
+----------------------------------------------------------------------------+
| +----------------------------------------------------------------+ |
| | Developers: Those who built with `ragas`. | |
| | (You have `import ragas` somewhere in your project) | |
| | +----------------------------------------------------+ | |
| | | Contributors: Those who make `ragas` better. | | |
| | | (You make PR to this repo) | | |
| | +----------------------------------------------------+ | |
| +----------------------------------------------------------------+ |
+----------------------------------------------------------------------------+
We welcome contributions from the community! Whether it's bug fixes, feature additions, or documentation improvements, your input is valuable.
- Fork the repository
- Create your feature branch (git checkout -b feature/AmazingFeature)
- Commit your changes (git commit -m 'Add some AmazingFeature')
- Push to the branch (git push origin feature/AmazingFeature)
- Open a Pull Request
🔍 Open Analytics
At Ragas, we believe in transparency. We collect minimal, anonymized usage data to improve our product and guide our development efforts.
✅ No personal or company-identifying information
✅ Open-source data collection code
✅ Publicly available aggregated data
To opt-out, set the RAGAS_DO_NOT_TRACK
environment variable to true
.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ragas-0.2.6.tar.gz
.
File metadata
- Download URL: ragas-0.2.6.tar.gz
- Upload date:
- Size: 5.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 877e723e4bbf29eab8e1b12f7bf6f63bb2145d63ea4c3ce21620b14f9dbfb421 |
|
MD5 | 4b179f3a8485d5890f81e6db668d63a1 |
|
BLAKE2b-256 | 9520b6e0e43897e5cf66659443aa647521d61c8045bb57930933bc63fed45c29 |
File details
Details for the file ragas-0.2.6-py3-none-any.whl
.
File metadata
- Download URL: ragas-0.2.6-py3-none-any.whl
- Upload date:
- Size: 157.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2d40a6af196df7346486e2eeb203bb0a542efa0827e839812f6c66123fd3319f |
|
MD5 | 9733af74b7e311e61145a727efc33c06 |
|
BLAKE2b-256 | 8b1a7f4fba14367ba769cf606edd017993faf919b2bbaef3e88f0929daed8b00 |