This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
Ramp - Rapid Machine Learning Prototyping
=========================================

Ramp is a python module for rapid prototyping of machine learning
solutions. It is essentially a [pandas](http://pandas.pydata.org)
wrapper around various python machine learning and statistics libraries
([scikit-learn](http://scikit-learn.org), [rpy2](http://rpy.sourceforge.net/rpy2.html) etc.),
providing a simple, declarative syntax for
exploring features, algorithms and transformations quickly and
efficiently.

Documentation: http://ramp.readthedocs.org

**Why Ramp?**

* **Clean, declarative syntax**

No more hackish one-off spaghetti scripts!

* **Complex feature transformations**

Chain and combine features:
```python
Normalize(Log('x'))
Interactions([Log('x1'), (F('x2') + F('x3')) / 2])
```
Reduce feature dimension:
```python
DimensionReduction([F('x%d'%i) for i in range(100)], decomposer=PCA(n_components=3))
```
Incorporate residuals or predictions to blend with other models:
```python
Residuals(config_model1) + Predictions(config_model2)
```
Any feature that uses the target ("y") variable will automatically respect the
current training and test sets.


* **Caching**

Ramp caches and stores on disk in fast HDF5 format (or elsewhere if you want) all features and models it
computes, so nothing is recomputed unnecessarily. Results are stored
and can be retrieved, compared, blended, and reused between runs.

* **Easy extensibility**

Ramp has a simple API, allowing you to plug in estimators from
scikit-learn, rpy2 and elsewhere, or easily build your own feature
transformations, metrics, feature selectors, reporters, or estimators.


## Quick start
[Getting started with Ramp: Classifying insults](http://www.kenvanharen.com/2012/11/getting-started-with-ramp-detecting.html)

Or, the quintessential Iris example:

```python
import pandas
from ramp import *
import urllib2
import sklearn
from sklearn import decomposition


# fetch and clean iris data from UCI
data = pandas.read_csv(urllib2.urlopen(
"http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"))
data = data.drop([149]) # bad line
columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class']
data.columns = columns


# all features
features = [FillMissing(f, 0) for f in columns[:-1]]

# features, log transformed features, and interaction terms
expanded_features = (
features +
[Log(F(f) + 1) for f in features] +
[
F('sepal_width') ** 2,
combo.Interactions(features),
]
)


# Define several models and feature sets to explore,
# run 5 fold cross-validation on each and print the results.
# We define 2 models and 4 feature sets, so this will be
# 4 * 2 = 8 models tested.
shortcuts.cv_factory(
data=data,

target=[AsFactor('class')],
metrics=[[metrics.GeneralizedMCC()]],

# Try out two algorithms
model=[
sklearn.ensemble.RandomForestClassifier(n_estimators=20),
sklearn.linear_model.LogisticRegression(),
],

# and 4 feature sets
features=[
expanded_features,

# Feature selection
[trained.FeatureSelector(
expanded_features,
# use random forest's importance to trim
selectors.RandomForestSelector(classifier=True),
target=AsFactor('class'), # target to use
n_keep=5, # keep top 5 features
)],

# Reduce feature dimension (pointless on this dataset)
[combo.DimensionReduction(expanded_features,
decomposer=decomposition.PCA(n_components=4))],

# Normalized features
[Normalize(f) for f in expanded_features],
]
)
```

## Status
Ramp is very alpha currently, so expect bugs, bug fixes and API changes.

## Requirements
* Numpy
* Scipy
* Pandas
* PyTables
* Sci-kit Learn

## Author
Ken Van Haren. Email with feedback/questions: kvh@science.io
Release History

Release History

0.1.4

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
ramp-0.1.4.tar.gz (31.6 kB) Copy SHA256 Checksum SHA256 Source Jan 31, 2013

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting