Construct artifical MAGs from complete genomes according to distribution
Project description
Eric Hugoson (eric@hugoson.org / hugoson@evolbio.mpg.de / @EricHugo)
Introduction
With an ever increasing rate of sequencing comes challenges in analysing the data. In particular, single-amplified genomes and metagenome assembled genomes (SAGs & MAGs) may prove challenging due to their propensity to be incomplete or contaminated with contigs from other genomes. Many tools exist to tackle the challenges at various stages of the analysis, but none are perfect. In order to devise new tools methods for dealing with SAGs and MAGs the ability to simulate such data sets is paramount.
randMAG is a slim software aimed at producing artificial MAGs or SAGs from existent complete genomes. randMAG produces randomised MAGs based on whole genomes provided, a distribution of contig lengths given, as well as desired completeness- and contamination levels.
Packaged with randMAG is a file containing the lengths of 192243 contigs of 2284 bacterial MAGs [1] from the Tara Oceans metagenomic survey.
Dependencies
Python (>=3.6)
Python libraries
If built from the PyPI package these will be installed automatically, otherwise can easily be installed using pip (Install pip).
Required
Biopython (>= 1.70)
Numpy (>= 1.13.1)
Matplotlib (>= 2.0.2)
SciPy (>= 1.1.0)
seaborn (>= 0.9.0)
pandas (>= 0.23.4)
Positional arguments
genome_tab Genomes in .fna in list format distribution Set of lengths to base the distribution on
genome_tab should be a simple file with a list of genomes (nucleotide fasta files) that will be used to built the artificial MAGs, e.g.:
GCF_000007265.1_ASM726v1_genomic.fna GCF_000007325.1_ASM732v1_genomic.fna ...
distribution should also be a simple file containing a list of integers representing a distribution of contig sizes by which the artificial contigs will be split, e.g.:
23967 15981 149609 ...
Optionally, distribution can be filled with Tara_bact to use the set of contig lengths from Tara Oceans described in the introduction.
Optional arguments
- -h, --help
show this help message and exit
- -c COMPLETENESS, --completeness COMPLETENESS
Range of completeness levels to be produced. Default=1.0
- -r CONTAMINATION, --contamination CONTAMINATION
Range of contamination to be included in produced MAGs. Default=1.0
- -n NUM, --num NUM
Number of randomised MAGs to produce. Produces one randomised per provided genome by default.
Examples
Initially, create a file with a list of the genomic fasta files which are to be the basis for the artificial MAGs:
$ head -n5 reference_fna.list /nobackup/genomic_sources/genbank_reference_bacteria_fna_20181128/ncbi-genomes-2018-11-28/GCF_000005845.2_ASM584v2_genomic.fna /nobackup/genomic_sources/genbank_reference_bacteria_fna_20181128/ncbi-genomes-2018-11-28/GCF_000006745.1_ASM674v1_genomic.fna /nobackup/genomic_sources/genbank_reference_bacteria_fna_20181128/ncbi-genomes-2018-11-28/GCF_000006765.1_ASM676v1_genomic.fna /nobackup/genomic_sources/genbank_reference_bacteria_fna_20181128/ncbi-genomes-2018-11-28/GCF_000006785.2_ASM678v2_genomic.fna /nobackup/genomic_sources/genbank_reference_bacteria_fna_20181128/ncbi-genomes-2018-11-28/GCF_000006845.1_ASM684v1_genomic.fna
Then a second file which is a list of lengths representing the distribution of contig sizes:
$ head -n5 Tara_bact 23967 15981 149609 37636 121320
Example 1 - Split into contigs
This example splits up all .fna files in reference_fna.list into contigs according to the distribution of contig lengths in Tara_bact:
$ randMAG reference_fna.list Tara_bact
The result is all a single .fna file created in the current working directory for each input .fna. Also produced is simulated_MAGs.tab, a tabular file containing input file, the unique 8-char suffix assigned, completeness-, and redundancy fractions:
$ head -n5 simulated_MAGs.tab GCF_000005845.2_ASM584v2_genomic mpmwoutk 1.0 1.0 GCF_000006745.1_ASM674v1_genomic mmqehxfx 1.0 1.0 GCF_000006765.1_ASM676v1_genomic engiyxoz 1.0 1.0 GCF_000006785.2_ASM678v2_genomic rtvayhqu 1.0 1.0 GCF_000006845.1_ASM684v1_genomic bzpsqnfq 1.0 1.0
The content of the fasta files in this example remained unchanged apart from being split into contigs.
Example 2 - Alter completeness/contamination
To change the completeness and contamination of the fasta files the -c and -r arguments need to be used. The -n argument can be used to get precisely the desired number of unqiue MAGs:
$ randMAG reference_fna.list Tara_bact -c 0.7 -r 1.2 -n 10000
This will produce files that are at most 70% complete and at least 20% contaminated:
$ head -n5 simulated_MAGs.tab GCF_000005845.2_ASM584v2_genomic kfcckaxy 0.6956260400391929 1.2092498368299183 GCF_000006745.1_ASM674v1_genomic xqnerzfy 0.6927500102156292 1.202911467089386 GCF_000006765.1_ASM676v1_genomic kiubfyau 0.6988059837775469 1.200510423558475 GCF_000006785.2_ASM678v2_genomic xxltcsmv 0.6849106013550827 1.2144702270571384 GCF_000006845.1_ASM684v1_genomic rcxezdoq 0.6927952822804169 1.2028640216997193
As well as 10 000 unique MAGs as requested with -n:
$ wc -l simulated_MAGs.tab 10000 simulated_MAGs.tab
References
Tully,B.J. et al. (2018) The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data, 5, 170203
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file randmag-1.2.0.tar.gz
.
File metadata
- Download URL: randmag-1.2.0.tar.gz
- Upload date:
- Size: 526.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.30.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0bde02a1113e4c95894ee9b3c133ca3f891e26c85c5e05590f25858c4892d9c2 |
|
MD5 | aeb0cb226ae070e392c45ebd1d90185e |
|
BLAKE2b-256 | 327a157b5f44a48542076dbef835d4d639a1e9c20f07a8876e9cb96e89771c03 |