Skip to main content

This is a machine learning package that includes a theoretical optimized variation of the random forest learning algorithm.

Project description

# Random-Genetic-Forest

The Random-Genetic Forest(RGF) is a variation of the original Random Forest machine learning algorithm. The RGF algorithm uses genetic algorithms to potential optimize accuracy and/or create non-parametric learning models. This implementation is a Spark module that allows for use in Big Data problems. The RGF Python module consumes datasets using Pyspark dataframes and creates RGF models.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

random-genetic-forest-0.0a2.tar.gz (10.2 kB view hashes)

Uploaded Source

Built Distribution

random_genetic_forest-0.0a2-py3-none-any.whl (18.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page