Skip to main content

My implementation of a random selection of artificial neural net based models.

Project description

random neural nets

Implementations of a random selection of artificial neural net based models and methods.

Python version

Development is done using pyenv, pinning the python version to the one in the file .python-version.

Installation (on Linux)

Package + notebooks:

git clone https://github.com/eschmidt42/random-neural-net-models.git
cd random-neural-net-models
make install

Package only:

pip install random-neural-net-models

Usage

See jupyter notebooks in nbs/ for:

  • perceptron: perceptron.ipynb
  • backpropagation: backpropagation_rumelhart1986.ipynb
  • convolution: convolution_lecun1990.ipynb
  • cnn autoencoder:
    • mnist: cnn_autoencoder_fastai2022.ipynb
    • fashion mnist: cnn_autoencoder_fastai2022_fashion.ipynb
  • variational autoencoder:
    • dense: dense_variational_autoencoder_fastai2022.ipynb
    • cnn+dense: cnn_variational_autoencoder_fastai2022.ipynb
  • optimizers: stochastic_optimization_methods.ipynb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

random-neural-net-models-0.1.1.tar.gz (15.7 kB view details)

Uploaded Source

Built Distribution

random_neural_net_models-0.1.1-py3-none-any.whl (17.2 kB view details)

Uploaded Python 3

File details

Details for the file random-neural-net-models-0.1.1.tar.gz.

File metadata

File hashes

Hashes for random-neural-net-models-0.1.1.tar.gz
Algorithm Hash digest
SHA256 7426ae5c6eeef6197846454c036dfd2b90ec502c27f637f9682ce62e25713964
MD5 2ec9ec76b08666c9d366fe858fc17728
BLAKE2b-256 9ddcf47eae1003d0c9ef25d090ed378f7a5db00692e1a37845330a38dadd3b88

See more details on using hashes here.

File details

Details for the file random_neural_net_models-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for random_neural_net_models-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 2771a453d58040195906b4c244f7b45bd07f3026b9027f4c30c59f8324163eb0
MD5 b187654427324872594fc5e2d7405b36
BLAKE2b-256 317e6ec2c6451b360a623e7429632faf764c1cc43c74c35f7928a6a4e93c15f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page