My implementation of a random selection of artificial neural net based models.
Project description
random neural nets
Implementations of a random selection of artificial neural net based models and methods.
Python version
Development is done using pyenv
, pinning the python version to the one in the file .python-version
.
Installation (on Linux)
Package + notebooks:
git clone https://github.com/eschmidt42/random-neural-net-models.git
cd random-neural-net-models
make install
Package only:
pip install random-neural-net-models
Usage
See jupyter notebooks in nbs/
for:
- perceptron:
perceptron.ipynb
- backpropagation:
backpropagation_rumelhart1986.ipynb
- convolution:
convolution_lecun1990.ipynb
- cnn autoencoder:
- mnist:
cnn_autoencoder_fastai2022.ipynb
- fashion mnist:
cnn_autoencoder_fastai2022_fashion.ipynb
- mnist:
- variational autoencoder:
- dense:
dense_variational_autoencoder_fastai2022.ipynb
- cnn+dense:
cnn_variational_autoencoder_fastai2022.ipynb
- dense:
- optimizers:
stochastic_optimization_methods.ipynb
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file random-neural-net-models-0.1.1.tar.gz
.
File metadata
- Download URL: random-neural-net-models-0.1.1.tar.gz
- Upload date:
- Size: 15.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7426ae5c6eeef6197846454c036dfd2b90ec502c27f637f9682ce62e25713964 |
|
MD5 | 2ec9ec76b08666c9d366fe858fc17728 |
|
BLAKE2b-256 | 9ddcf47eae1003d0c9ef25d090ed378f7a5db00692e1a37845330a38dadd3b88 |
File details
Details for the file random_neural_net_models-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: random_neural_net_models-0.1.1-py3-none-any.whl
- Upload date:
- Size: 17.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2771a453d58040195906b4c244f7b45bd07f3026b9027f4c30c59f8324163eb0 |
|
MD5 | b187654427324872594fc5e2d7405b36 |
|
BLAKE2b-256 | 317e6ec2c6451b360a623e7429632faf764c1cc43c74c35f7928a6a4e93c15f6 |