Skip to main content

My implementation of a random selection of artificial neural net based models.

Project description

random neural nets

Implementations of a random selection of artificial neural net based models and methods.

Python version

Development is done using pyenv, pinning the python version to the one in the file .python-version.

Installation (on Linux)

Package + notebooks:

git clone https://github.com/eschmidt42/random-neural-net-models.git
cd random-neural-net-models
make install

Package only:

pip install random-neural-net-models

Usage

See jupyter notebooks in nbs/ for:

  • perceptron: perceptron.ipynb
  • backpropagation: backpropagation_rumelhart1986.ipynb
  • convolution: convolution_lecun1990.ipynb
  • cnn autoencoder:
    • mnist: cnn_autoencoder_fastai2022.ipynb
    • fashion mnist: cnn_autoencoder_fastai2022_fashion.ipynb
  • variational autoencoder:
    • dense: dense_variational_autoencoder_fastai2022.ipynb
    • cnn+dense: cnn_variational_autoencoder_fastai2022.ipynb
  • optimizers: stochastic_optimization_methods.ipynb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

random-neural-net-models-0.1.2.tar.gz (15.4 kB view details)

Uploaded Source

Built Distribution

random_neural_net_models-0.1.2-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file random-neural-net-models-0.1.2.tar.gz.

File metadata

File hashes

Hashes for random-neural-net-models-0.1.2.tar.gz
Algorithm Hash digest
SHA256 70e082581932fab86dc4d65d2dac277722283afbea6ddde9eafd47c511f43f2c
MD5 61eaa508fbd0ce7210687d2d7f5aa1eb
BLAKE2b-256 f2966c7b76ef75eeb03bd157765194dc2ee2d513188e19ccef8980af46c2dbbb

See more details on using hashes here.

File details

Details for the file random_neural_net_models-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for random_neural_net_models-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1627b6afd3c1b4581e31397b47a47a617151a8f4024cc58489326f1de2c642a6
MD5 a2e636d02af85fa289b10178765010ba
BLAKE2b-256 f6e9225298e1f422b5e86bbbdea3cbc9fd0af128277965c70e173705bf480a4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page