Skip to main content

My implementation of a random selection of artificial neural net based models.

Project description

random neural nets

Implementations of a random selection of artificial neural net based models and methods.

Python version

Development is done using pyenv, pinning the python version to the one in the file .python-version.

Installation (on Linux)

Package + notebooks:

git clone https://github.com/eschmidt42/random-neural-net-models.git
cd random-neural-net-models
make install

Package only:

pip install random-neural-net-models

Usage

See jupyter notebooks in nbs/ for:

  • perceptron: perceptron.ipynb
  • backpropagation: backpropagation_rumelhart1986.ipynb
  • convolution: convolution_lecun1990.ipynb
  • cnn autoencoder:
    • mnist: cnn_autoencoder_fastai2022.ipynb
    • fashion mnist: cnn_autoencoder_fastai2022_fashion.ipynb
  • variational autoencoder:
    • dense: dense_variational_autoencoder_fastai2022.ipynb
    • cnn+dense: cnn_variational_autoencoder_fastai2022.ipynb
  • optimizers: stochastic_optimization_methods.ipynb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

random-neural-net-models-0.1.3.tar.gz (16.1 kB view details)

Uploaded Source

Built Distribution

random_neural_net_models-0.1.3-py3-none-any.whl (19.0 kB view details)

Uploaded Python 3

File details

Details for the file random-neural-net-models-0.1.3.tar.gz.

File metadata

File hashes

Hashes for random-neural-net-models-0.1.3.tar.gz
Algorithm Hash digest
SHA256 e39fe02345962db741153f6ef94baaafcd5635fd6ae28b64dac38a21af2f988a
MD5 86ea229c317fdd9b8bdde74cc2d8b719
BLAKE2b-256 84808b28feb6c3d0ba107345d11a679419a8a019eb3ca88f51f7dab4fe848fca

See more details on using hashes here.

File details

Details for the file random_neural_net_models-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for random_neural_net_models-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 256d61aad13b7ccf7462bc240e489badd5f23428b807cb8d245b1604bbf26d4c
MD5 2d62659f549e9e18ab3a5470df93845c
BLAKE2b-256 a969872be45feac8c16be67107656fde9df0d2b1d905389225d9358d8bf734f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page