Skip to main content

My implementation of a random selection of artificial neural net based models.

Project description

random neural nets

Implementations of a random selection of artificial neural net based models and methods.

Python version

Development is done using pyenv, pinning the python version to the one in the file .python-version.

Installation (on Linux)

Package + notebooks:

git clone https://github.com/eschmidt42/random-neural-net-models.git
cd random-neural-net-models
make install

Package only:

pip install random-neural-net-models

Usage

See jupyter notebooks in nbs/ for:

  • perceptron: perceptron.ipynb
  • backpropagation: backpropagation_rumelhart1986.ipynb
  • convolution: convolution_lecun1990.ipynb
  • cnn autoencoder:
    • mnist: cnn_autoencoder_fastai2022.ipynb
    • fashion mnist: cnn_autoencoder_fastai2022_fashion.ipynb
  • variational autoencoder:
    • dense: dense_variational_autoencoder_fastai2022.ipynb
    • cnn+dense: cnn_variational_autoencoder_fastai2022.ipynb
  • optimizers: stochastic_optimization_methods.ipynb
  • resnet: resnet_fastai2022.ipynb
  • unet: unet_fastai2022.ipynb
  • diffusion (unet + noise): diffusion_fastai2022.ipynb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

random-neural-net-models-0.1.6.tar.gz (20.3 kB view details)

Uploaded Source

Built Distribution

random_neural_net_models-0.1.6-py3-none-any.whl (25.9 kB view details)

Uploaded Python 3

File details

Details for the file random-neural-net-models-0.1.6.tar.gz.

File metadata

File hashes

Hashes for random-neural-net-models-0.1.6.tar.gz
Algorithm Hash digest
SHA256 955c688681b4dda6dd7479c1f68636dc783b9151e5c0074fcfa55f66cdaa54a9
MD5 4f22c273587594af13fa987d9647b40d
BLAKE2b-256 502fac50669e3e9547100c1e9c661743134b394a0d65c2513668ab86d3d3aec0

See more details on using hashes here.

File details

Details for the file random_neural_net_models-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for random_neural_net_models-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 d6c48b08381cb965ba515f9f7a8c0a1648283f4d2fbb22531408bd62ca6a87db
MD5 41a9cbf12a7c08c1a683965551a69e89
BLAKE2b-256 e7a8ebff1490f71b719d74b48144cf625849e1df1eba59b0ced479652124fd78

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page