Skip to main content

My implementation of a random selection of artificial neural net based models.

Project description

random neural nets

Implementations of a random selection of artificial neural net based models and methods.

Python version

Development is done using pyenv, pinning the python version to the one in the file .python-version.

Installation (on Linux)

Package + notebooks:

git clone https://github.com/eschmidt42/random-neural-net-models.git
cd random-neural-net-models
make install

Package only:

pip install random-neural-net-models

Usage

See jupyter notebooks in nbs/ for:

  • perceptron: perceptron.ipynb
  • backpropagation: backpropagation_rumelhart1986.ipynb
  • convolution: convolution_lecun1990.ipynb
  • cnn autoencoder:
    • mnist: cnn_autoencoder_fastai2022.ipynb
    • fashion mnist: cnn_autoencoder_fastai2022_fashion.ipynb
  • variational autoencoder:
    • dense: dense_variational_autoencoder_fastai2022.ipynb
    • cnn+dense: cnn_variational_autoencoder_fastai2022.ipynb
  • optimizers: stochastic_optimization_methods.ipynb
  • resnet: resnet_fastai2022.ipynb
  • unet: unet_fastai2022.ipynb
  • diffusion (unet + noise): diffusion_fastai2022.ipynb
  • mingpt:
    • mingpt_sort.ipynb
    • mingpt_char.ipynb
    • mingpt_adder.ipynb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

random-neural-net-models-0.2.0.tar.gz (20.4 kB view details)

Uploaded Source

Built Distribution

random_neural_net_models-0.2.0-py3-none-any.whl (25.9 kB view details)

Uploaded Python 3

File details

Details for the file random-neural-net-models-0.2.0.tar.gz.

File metadata

File hashes

Hashes for random-neural-net-models-0.2.0.tar.gz
Algorithm Hash digest
SHA256 5411ecaccaee091b50ffd288929cd45ff2dcfc038a2e1b836613e372335686b2
MD5 bc7cf4caacd35f418b84b8386ef96f83
BLAKE2b-256 d295168f701ffadc8cabf420bf23fc42ab6c89264fa53c365696c22dca66ad2c

See more details on using hashes here.

File details

Details for the file random_neural_net_models-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for random_neural_net_models-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2b6e0e1068b02b02fe80e58f5615c116ae6b31e9af25330c1d558672972fbaa3
MD5 61b0d69d552899d7f74f272f51d336fc
BLAKE2b-256 ee00cf4b8299474e7ca6aef74a6f53ca36a102f98d09ba05eb0677f12db6b8a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page