Skip to main content

My implementation of a random selection of artificial neural net based models.

Project description

random neural nets

Implementations of a random selection of artificial neural net based models and methods.

Python version

Development is done using pyenv, pinning the python version to the one in the file .python-version.

Installation (on Linux)

Package + notebooks:

git clone https://github.com/eschmidt42/random-neural-net-models.git
cd random-neural-net-models
make install

Package only:

pip install random-neural-net-models

Usage

See jupyter notebooks in nbs/ for:

  • fastai style learner with tensordict: learner-example.ipynb
  • perceptron: perceptron.ipynb
  • backpropagation: backpropagation_rumelhart1986.ipynb
  • convolution: convolution_lecun1990.ipynb
  • cnn autoencoder:
    • mnist: cnn_autoencoder_fastai2022.ipynb
    • fashion mnist: cnn_autoencoder_fastai2022_fashion.ipynb
  • variational autoencoder:
    • dense: dense_variational_autoencoder_fastai2022.ipynb
    • cnn+dense: cnn_variational_autoencoder_fastai2022.ipynb
  • optimizers: stochastic_optimization_methods.ipynb
  • resnet: resnet_fastai2022.ipynb
  • unet:
    • unet_fastai2022.ipynb
    • unet-isbi2012
  • diffusion (unet + noise):
    • diffusion_fastai2022.ipynb
    • diffusion_fastai2022_learner.ipynb
    • diffusion_fastai2022_learner_with_attention.ipynb
  • mingpt:
    • mingpt_sort.ipynb
    • mingpt_char.ipynb
    • mingpt_adder.ipynb
  • transformer: language-model.ipynb
  • tokenization: tokenization.ipynb
  • tabular:
    • tabular-fastai-classification.ipynb
    • tabular-fastai-classification-with-missingness.ipynb
    • tabular-fastai-classification-with-missingness-and-categories.ipynb
    • tabular-fastai-regression.ipynb
    • tabular-fastai-regression-with-missingness.ipynb
    • tabular-fastai-regression-with-missingness-and-categories.ipynb
    • tabular-variational-auto-encoder.ipynb
    • reusing-vae-for-classification.ipynb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

random-neural-net-models-0.3.0.tar.gz (40.8 kB view details)

Uploaded Source

Built Distribution

random_neural_net_models-0.3.0-py3-none-any.whl (49.3 kB view details)

Uploaded Python 3

File details

Details for the file random-neural-net-models-0.3.0.tar.gz.

File metadata

File hashes

Hashes for random-neural-net-models-0.3.0.tar.gz
Algorithm Hash digest
SHA256 a8943e96c25222d355ff9f75089eb303d4ba5f2dc7a78e0afd18a293781e4326
MD5 0d0a5e1e9bdd1da31eafc6ad93130c38
BLAKE2b-256 833bc81b9337234de0786bcd248ad85dedd3f9509f021123a028b251455704a9

See more details on using hashes here.

File details

Details for the file random_neural_net_models-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for random_neural_net_models-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d028cbc6cacdea4a382ab69f7848688c1a4de4d57eca44cd915a635fa58e7552
MD5 1dd083e66b31c85ab43f736baa2a581c
BLAKE2b-256 ea624cd80fd94129b7feeca429dbef991b85efa539dc28b3970cd1e661d8c658

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page