Skip to main content

A library for computing expectation values

Project description

## What?

Implements the standard math syntax for expectation values of random variables on finite sets

## How?

This is best explained with an example:

```
# import the objects
from random_variable import RandomVariable, E

# define a universe for example the possible outcomes of a dice
dice = [1, 2, 3, 4, 5, 6]

# define one random variable
X = RandomVariable(dice)

# compute and print expectation values
print('mean:', E[X])
print('one minus mean:', E[1-X])
print('twice the mean:', E[X*2])
print('variance:', E[(X-E[X])**2])
print('variance again:', E[X**2]-E[X]**2)
print('standard deviation:', (E[X**2]-E[X]**2)**0.5)
print('skewness:', E[(X-E[X])**3]/E[(X-E[X])**2]**1.5)
print('kurtosis:', E[(X-E[X])**4]/E[(X-E[X])**2]**2)
print('some other complex expectation value:', E[sin(2*X)*cos(X+1)])
```

(works in both python 2 and python 3)

## License

BSD v3 - Created by Prof. Massimo Di Pierro (DePaul Universty) 2018

Project details


Release history Release notifications | RSS feed

This version

0.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

random_variable-0.2.tar.gz (2.0 kB view details)

Uploaded Source

File details

Details for the file random_variable-0.2.tar.gz.

File metadata

File hashes

Hashes for random_variable-0.2.tar.gz
Algorithm Hash digest
SHA256 e1fcbf6f0a93d3caa6513c398e344f31a242c74dec91e528e1e525dc1b73c20c
MD5 6ce3b70b3a56be4d1d44a56f760bff79
BLAKE2b-256 23d0f12a19d410438753f30f58ea22ad5ce8315322eb6ee18d146167b18e3acf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page