Random forest classification rules mining package
Project description
Random Forest Rules
Get the representation of all rules found by sklearn RandomForestClassifier. It works in following way:
- On each feature, it applies one-hot encoding that makes each column binary.
- Random Forest runs on the features and a target attribute.
- All trees are extracted from the Random Forest Regressor.
- Decision Trees are split to classification rules.
GIT repository
https://github.com/lukassykora/randomForestRules
Installation
pip install randomForestRules-lukassykora
Jupyter Notebook
Example
from randomForestRules import RandomForestRules
import pandas as pd
df = pd.read_csv("data/audiology.csv")
df.columns = df.columns.str.replace("_", "-") # underscore not allowed
# All feature columns
cols=[]
for col in df.columns:
if col != 'binaryClass':
cols.append(col)
# Initialize
randomForest = RandomForestRules()
# Load data
randomForest.load_pandas(df)
# Fit
randomForest.fit(antecedent = cols, consequent = 'binaryClass', supp=0.005, conf=50)
# Get result
frame = randomForest.get_frame()
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for randomForestRules-lukassykora-1.1.2.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 789347700b4e62f998135423f5c3fe16b3c383d1a0dc4c421f36e5c67e9e749b |
|
MD5 | 21aa9f37c3cdb8f85afb4af4b888ea25 |
|
BLAKE2b-256 | dac0f82ca47b26db79d3faf0f05ff032043aab0eb9e74fafc614b53c5ba9a6b2 |
Close
Hashes for randomForestRules_lukassykora-1.1.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b419fd73952b668c5891551c42f7babb015441f592b0901558de66e01e70e117 |
|
MD5 | 95d1c5820e919c84a7d2d823e68af037 |
|
BLAKE2b-256 | 053c19f41c9d3f7dfeff2f494d799f58087704048ace227a55b98644caec9522 |