Skip to main content

Generator of random data frames.

Project description

Random Data Generators Python package

Introduction

This Python package has functions for generating random strings, words, pet names, and (tabular) data frames.

The full list of features and development status can be found in the org-mode file Random-data-generators-work-plan.org.

Motivation

The primary motivation for this package is to have simple, intuitively named functions for generating random vectors (lists) and data frames of different objects.

Although, Python has support of random vector generation, it is assumed that commands like the following are easier to use:

random_string(6, chars = 4, pattern = "[\l\d]")

Installation

To install from GitHub use the shell command:

python -m pip install git+https://github.com/antononcube/Python-packages.git#egg=RandomDataGenerators\&subdirectory=RandomDataGenerators

To install from PyPi.org:

python -m pip install RandomDataGenerators

Setup

from RandomDataGenerators import *

The import command above is equivalent to the import commands:

from RandomDataGenerators.RandomDataFrameGenerator import random_data_frame
from RandomDataGenerators.RandomFunctions import random_string
from RandomDataGenerators.RandomFunctions import random_word
from RandomDataGenerators.RandomFunctions import random_pet_name
from RandomDataGenerators.RandomFunctions import random_pretentious_job_title

We are also going to use the packages random, numpy, and pandas:

import random
import numpy
import pandas
pandas.set_option('display.max_columns', None)

Random strings

The function random_string generates random strings. (It is based on the package StringGenerator, [PW1].)

Here we generate a vector of random strings with length 4 and characters that belong to specified ranges:

random_string(6, chars=4, pattern = "[\d]") # digits only

## ['3749', '4572', '9812', '7395', '2388', '7625']

random_string(6, chars=4, pattern = "[\l]") # letters only

## ['FhSd', 'DNSu', 'YggC', 'ajqA', 'dIBt', 'Mjdc']

random_string(6, chars=4, pattern = "[\l\d]") # both digits and letters

## ['yp4u', '2Shk', 'pvpS', 'M43O', 'm5SX', 'It3L']

Random words

The function random_word generates random words.

Here we generate a list with 12 random words:

random_word(12)

## ['arteria', 'Sauria', 'mentation', 'elope', 'expositor', 'planetarium', 'agglutinin', 'Faunus', 'flab', 'slub', 'Chasidic', 'Jirrbal']

Here we generate a table of random words of different types (kinds):

dfWords = pandas.DataFrame({k: random_word(6, kind = k) for k in ["Any", "Common", "Known", "Stop"]})
print(dfWords.transpose().to_string())

##                0              1          2                 3            4              5
## Any     stuffing  mind-altering    angrily        Embothrium       sorbet        smoking
## Common    reason       mackerel  alignment        calculator     halfback      paranoiac
## Known     tannoy    double-date    deckled  gynandromorphous  gravitative  steganography
## Stop       about              N      noone              next         back          alone

Remark: None can be used instead of 'Any'.


Random pet names

The function random_pet_name generates random pet names.

The pet names are taken from publicly available data of pet license registrations in the years 2015–2020 in Seattle, WA, USA. See [DG1].

The following command generates a list of six random pet names:

random.seed(32)
random_pet_name(6)

## ['Oskar', 'Bilbo "Bobo" Waggins', 'Maximus', 'Gracie', 'Osa', 'Fabio']

The named argument species can be used to specify specie of the random pet names. (According to the specie-name relationships in [DG1].)

Here we generate a table of random pet names of different species:

dfPetNames = pandas.DataFrame({ wt: random_pet_name(6, species = wt) for wt in ["Any", "Cat", "Dog", "Goat", "Pig"] })
dfPetNames.transpose()

##             0                1         2        3          4         5
## Any     Lumen             Asha      Echo     Yuki    Francis   Charlie
## Cat     Ellie      Roxie Grace    Norman     Bean  Mr. Darcy  Hermione
## Dog   Brewski            Matzo      Joey    K. C.      Oscar    Gracie
## Goat     Lula  Brussels Sprout     Grace   Moppet     Frosty      Arya
## Pig    Millie         Guinness  Guinness  Atticus   Guinness    Millie

Remark: None can be used instead of 'Any'.

The named argument weighted can be used to specify random pet name choice based on known real-life number of occurrences:

random.seed(32);
random_pet_name(6, weighted=True)

## ['Zorro', 'Beeker', 'Lucy', 'Blanco', 'Winston', 'Petunia']

The weights used correspond to the counts from [DG1].

Remark: The implementation of random-pet-name is based on the Mathematica implementation RandomPetName, [AAf1].


Random pretentious job titles

The function random_pretentious_job_title generates random pretentious job titles.

The following command generates a list of six random pretentious job titles:

random_pretentious_job_title(6)

## ['Direct Identity Officer', 'District Group Synergist', 'Lead Brand Liason', 'Central Configuration Administrator', 'Senior Accountability Facilitator', 'Dynamic Web Producer']

The named argument number_of_words can be used to control the number of words in the generated job titles.

The named argument language can be used to control in which language the generated job titles are in. At this point, only Bulgarian and English are supported.

Here we generate pretentious job titles using different languages and number of words per title:

random.seed(2)
random_pretentious_job_title(12, number_of_words = None, language = None)

## ['Manager', 'Клиентов Асистент на Инфраструктурата', 'Customer Quality Strategist', 'Наследствен Анализатор по Идентичност', 'Administrator', 'Изпълнител на Фактори', 'Administrator', 'Architect', 'Investor Assurance Agent', 'Прогресивен Служител по Сигурност', 'Координатор', 'Анализатор по Оптимизация']

Remark: None can be used as values for the named arguments number_of_words and language.

Remark: The implementation uses the job title phrases in https://www.bullshitjob.com . It is, more-or-less, based on the Mathematica implementation RandomPretentiousJobTitle, [AAf2].


Random tabular datasets

The function random_data_frame can be used generate tabular data frames.

Remark: In this package a data frame is an object produced and manipulated by the package pandas.

Here are basic calls:

random_data_frame()
random_data_frame(None, row_names=True)
random_data_frame(None, None)
random_data_frame(12, 4)
random_data_frame(None, 4)
random_data_frame(5, None, column_names_generator = random_pet_name)
random_data_frame(15, 5, generators = [random_pet_name, random_string, random_pretentious_job_title])
random_data_frame(None, ["Col1", "Col2", "Col3"], row-names=False)

Here is example of a generated data frame with column names that are cat pet names:

random_data_frame(5, 4, column_names_generator = lambda size: random_pet_name(size, species = 'Cat'), row_names=True)

##          Meryl   Oreo  Douglas Fur Sprockett
## id.0 -1.053990  QhFlT            0     o7p5f
## id.1 -0.707621  G90kh            0     yBupF
## id.2  0.494162  eMVtF            0     Ez2Df
## id.3  0.400718  tx3HL            2     3Tz7I
## id.4 -1.345948  r3NRa            0     whfam

Remark: Both wide format and long format data frames can be generated.

Remark: The signature design and implementation are based on the Mathematica implementation RandomTabularDataset, [AAf3]. There are also corresponding packages written in R, [AAp1], and Raku, [AAp2].

Here is an example in which some of the columns have specified generators:

random.seed(66)
random_data_frame(10, 
                  ["alpha", "beta", "gamma", "zetta", "omega"], 
                  generators = {"alpha" : random_pet_name, 
                                "beta" :  numpy.random.normal, 
                                "gamma" : lambda size: numpy.random.poisson(lam=5, size=size) } )

##       alpha      beta  gamma  zetta             omega
## 0    Frayda  0.811681      4  1V05P             swing
## 1     Rosie  0.591327      3  tg7yn           Carolus
## 2      Jovi  0.563906      7  imaDl            sailor
## 3     Pilot  0.607250      7  WAg8u           echinus
## 4    Brodie  0.279003     12  yXEao          Ramayana
## 5  Springer -1.394703      5  JFBoz            simper
## 6       Uma -0.538088      8  7ATV1        consecrate
## 7      Diva  0.343234      4  GeJUh            blight
## 8    Fezzik  1.506241      6  yEPI5  misappropriation
## 9      Hana -1.359908      4  PG3IS          diploidy

References

Articles

[AA1] Anton Antonov, “Pets licensing data analysis”, (2020), MathematicaForPrediction at WordPress.

Functions, packages

[AAf1] Anton Antonov, RandomPetName, (2021), Wolfram Function Repository.

[AAf2] Anton Antonov, RandomPretentiousJobTitle, (2021), Wolfram Function Repository.

[AAf3] Anton Antonov, RandomTabularDataset, (2021), Wolfram Function Repository.

[AAp1] Anton Antonov, RandomDataFrameGenerator R package, (2020), R-packages at GitHub/antononcube.

[AAp2] Anton Antonov, Data::Generators Raku package, (2021), Raku Modules.

[PW1] Paul Wolf, StringGenerator Python package, (PyPi.org)(https://pypi.org).

[WRI1] Wolfram Research (2010), RandomVariate, Wolfram Language function.

Data repositories

[DG1] Data.Gov, Seattle Pet Licenses, catalog.data.gov.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RandomDataGenerators-0.3.0.tar.gz (462.8 kB view details)

Uploaded Source

Built Distribution

RandomDataGenerators-0.3.0-py3-none-any.whl (477.5 kB view details)

Uploaded Python 3

File details

Details for the file RandomDataGenerators-0.3.0.tar.gz.

File metadata

  • Download URL: RandomDataGenerators-0.3.0.tar.gz
  • Upload date:
  • Size: 462.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for RandomDataGenerators-0.3.0.tar.gz
Algorithm Hash digest
SHA256 44a5dcb37314804704d74fa36cda74c6fe88b2876cfa8b85e1c6365c1fcf31da
MD5 a3cb2f36280bd713acc9a6e74e79c6a7
BLAKE2b-256 866bfa5ced04ce683057e8b3e1bf64e8b448fdbda2b5e518f5967bdc00ccb747

See more details on using hashes here.

File details

Details for the file RandomDataGenerators-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for RandomDataGenerators-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 318a33420d5b3ae4ef93b370afae959e962ca903ec78d333d74dedc51380b364
MD5 8a368f78c962ad7198eb5a76c2a293f5
BLAKE2b-256 674d0a865ae6e816cce6e4036d8d6a4027f836d4dbe4c1e66c5944b39f646113

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page