Skip to main content

Random generator supporting multiple PRNGs

Project description

Random Number Generator using settable Basic RNG interface for future NumPy RandomState evolution.

Continuous Integration

Travis Build Status Appveyor Build Status Build Status

Coverage

Coverage Status codecov

Latest Release

PyPI version Anacnoda Cloud

License

NCSA License BSD License DOI

This is a library and generic interface for alternative random generators in Python and NumPy.

Python 2.7 Support

v1.16 is the final major version that supports Python 2.7. Any bugs in v1.16 will be patched until the end of 2019. All future releases are Python 3, with an initial minimum version of 3.5.

Compatibility Warning

RandomGenerator does not support Box-Muller normal variates and so it not 100% compatible with NumPy (or randomstate). Box-Muller normals are slow to generate and all functions which previously relied on Box-Muller normals now use the faster Ziggurat implementation. If you require backward compatibility, a legacy generator, RandomState, has been created which can fully reproduce the sequence produced by NumPy.

Features

  • Replacement for NumPy’s RandomState

    from randomgen import RandomGenerator, MT19937
    rnd = RandomGenerator(MT19937())
    x = rnd.standard_normal(100)
    y = rnd.random_sample(100)
    z = rnd.randn(10,10)
  • Default random generator is a fast generator called Xoroshiro128plus

  • Support for random number generators that support independent streams and jumping ahead so that sub-streams can be generated

  • Faster random number generation, especially for normal, standard exponential and standard gamma using the Ziggurat method

    from randomgen import RandomGenerator
    # Default basic PRNG is Xoroshiro128
    rnd = RandomGenerator()
    w = rnd.standard_normal(10000)
    x = rnd.standard_exponential(10000)
    y = rnd.standard_gamma(5.5, 10000)
  • Support for 32-bit floating randoms for core generators. Currently supported:

    • Uniforms (random_sample)

    • Exponentials (standard_exponential, both Inverse CDF and Ziggurat)

    • Normals (standard_normal)

    • Standard Gammas (via standard_gamma)

    WARNING: The 32-bit generators are experimental and subject to change.

    Note: There are no plans to extend the alternative precision generation to all distributions.

  • Support for filling existing arrays using out keyword argument. Currently supported in (both 32- and 64-bit outputs)

    • Uniforms (random_sample)

    • Exponentials (standard_exponential)

    • Normals (standard_normal)

    • Standard Gammas (via standard_gamma)

  • Support for Lemire’s method of generating uniform integers on an arbitrary interval by setting use_masked=True.

Included Pseudo Random Number Generators

This module includes a number of alternative random number generators in addition to the MT19937 that is included in NumPy. The RNGs include:

Differences from numpy.random.RandomState

New Features

  • standard_normal, normal, randn and multivariate_normal all use the much faster (100%+) Ziggurat method.

  • standard_gamma and gamma both use the much faster Ziggurat method.

  • standard_exponential exponential both support an additional method keyword argument which can be inv or zig where inv corresponds to the current method using the inverse CDF and zig uses the much faster (100%+) Ziggurat method.

  • Core random number generators can produce either single precision (np.float32) or double precision (np.float64, the default) using the optional keyword argument dtype

  • Core random number generators can fill existing arrays using the out keyword argument

  • Standardizes integer-values random values as int64 for all platforms.

  • randint supports generating using rejection sampling on masked values (the default) or Lemire’s method. Lemire’s method can be much faster when the required interval length is much smaller than the closes power of 2.

New Functions

  • random_entropy - Read from the system entropy provider, which is commonly used in cryptographic applications

  • random_raw - Direct access to the values produced by the underlying PRNG. The range of the values returned depends on the specifics of the PRNG implementation.

  • random_uintegers - unsigned integers, either 32- ([0, 2**32-1]) or 64-bit ([0, 2**64-1])

  • jump - Jumps RNGs that support it. jump moves the state a great distance. Only available if supported by the RNG.

  • advance - Advanced the RNG ‘as-if’ a number of draws were made, without actually drawing the numbers. Only available if supported by the RNG.

Status

  • Builds and passes all tests on:

    • Linux 32/64 bit, Python 2.7, 3.5, 3.6, 3.7

    • PC-BSD (FreeBSD) 64-bit, Python 2.7

    • OSX 64-bit, Python 2.7, 3.5, 3.6, 3.7

    • Windows 32/64 bit, Python 2.7, 3.5 and 3.6, 3.7

Version

The package version matches the latest version of NumPy where RandomState(MT19937()) passes all NumPy test.

Documentation

Documentation for the latest release is available on my GitHub pages. Documentation for the latest commit (unreleased) is available under devel.

Plans

This module is essentially complete. There are a few rough edges that need to be smoothed.

  • Creation of additional streams from where supported (i.e. a next_stream() method)

Requirements

Building requires:

  • Python (2.7, 3.5, 3.6, 3.7)

  • NumPy (1.13, 1.14, 1.15, 1.16)

  • Cython (0.26+)

  • tempita (0.5+), if not provided by Cython

Testing requires pytest (4.0+).

Note: it might work with other versions but only tested with these versions.

Development and Testing

All development has been on 64-bit Linux, and it is regularly tested on Travis-CI (Linux/OSX) and Appveyor (Windows). The library is occasionally tested on Linux 32-bit and Free BSD 11.1.

Basic tests are in place for all RNGs. The MT19937 is tested against NumPy’s implementation for identical results. It also passes NumPy’s test suite where still relevant.

Installing

Either install from PyPi using

pip install randomgen

or, if you want the latest version,

pip install git+https://github.com/bashtage/randomgen.git

or from a cloned repo,

python setup.py install

SSE2

dSFTM makes use of SSE2 by default. If you have a very old computer or are building on non-x86, you can install using:

python setup.py install --no-sse2

Windows

Either use a binary installer, or if building from scratch, use Python 3.6 with Visual Studio 2015/2017 Community Edition. It can also be build using Microsoft Visual C++ Compiler for Python 2.7 and Python 2.7.

Using

The separate generators are importable from randomgen

from randomgen import RandomGenerator, ThreeFry, PCG64, MT19937
rg = RandomGenerator(ThreeFry())
rg.random_sample(100)

rg = RandomGenerator(PCG64())
rg.random_sample(100)

# Identical to NumPy
rg = RandomGenerator(MT19937())
rg.random_sample(100)

License

Standard NCSA, plus sub licenses for components.

Performance

Performance is promising, and even the mt19937 seems to be faster than NumPy’s mt19937.

Speed-up relative to NumPy (Uniform Doubles)
************************************************************
DSFMT                 184.9%
MT19937                17.3%
PCG32                  83.3%
PCG64                 108.3%
Philox                 -4.9%
ThreeFry              -12.0%
ThreeFry32            -63.9%
Xoroshiro128          159.5%
Xorshift1024          150.4%
Xoshiro256StarStar    145.7%
Xoshiro512StarStar    113.1%

Speed-up relative to NumPy (64-bit unsigned integers)
************************************************************
DSFMT                  17.4%
MT19937                 7.8%
PCG32                  60.3%
PCG64                  73.5%
Philox                -25.5%
ThreeFry              -30.5%
ThreeFry32            -67.8%
Xoroshiro128          124.0%
Xorshift1024          109.4%
Xoshiro256StarStar    100.3%
Xoshiro512StarStar     63.5%

Speed-up relative to NumPy (Standard normals)
************************************************************
DSFMT                 183.0%
MT19937               169.0%
PCG32                 240.7%
PCG64                 231.6%
Philox                131.3%
ThreeFry              118.3%
ThreeFry32             21.6%
Xoroshiro128          332.1%
Xorshift1024          232.4%
Xoshiro256StarStar    306.6%
Xoshiro512StarStar    274.6%

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

randomgen-1.16.6.tar.gz (702.2 kB view details)

Uploaded Source

Built Distributions

randomgen-1.16.6-cp37-cp37m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

randomgen-1.16.6-cp37-cp37m-win32.whl (3.2 MB view details)

Uploaded CPython 3.7m Windows x86

randomgen-1.16.6-cp37-cp37m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m

randomgen-1.16.6-cp37-cp37m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.7m

randomgen-1.16.6-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.16.6-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

randomgen-1.16.6-cp36-cp36m-win32.whl (3.2 MB view details)

Uploaded CPython 3.6m Windows x86

randomgen-1.16.6-cp36-cp36m-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m

randomgen-1.16.6-cp36-cp36m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m

randomgen-1.16.6-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.16.6-cp35-cp35m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.5m Windows x86-64

randomgen-1.16.6-cp35-cp35m-win32.whl (3.2 MB view details)

Uploaded CPython 3.5m Windows x86

randomgen-1.16.6-cp35-cp35m-manylinux1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.5m

randomgen-1.16.6-cp35-cp35m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 3.5m

randomgen-1.16.6-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

randomgen-1.16.6-cp27-cp27mu-manylinux1_x86_64.whl (2.0 MB view details)

Uploaded CPython 2.7mu

randomgen-1.16.6-cp27-cp27mu-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 2.7mu

randomgen-1.16.6-cp27-cp27m-win_amd64.whl (3.2 MB view details)

Uploaded CPython 2.7m Windows x86-64

randomgen-1.16.6-cp27-cp27m-win32.whl (3.1 MB view details)

Uploaded CPython 2.7m Windows x86

randomgen-1.16.6-cp27-cp27m-manylinux1_x86_64.whl (2.0 MB view details)

Uploaded CPython 2.7m

randomgen-1.16.6-cp27-cp27m-manylinux1_i686.whl (1.9 MB view details)

Uploaded CPython 2.7m

randomgen-1.16.6-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (2.0 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file randomgen-1.16.6.tar.gz.

File metadata

  • Download URL: randomgen-1.16.6.tar.gz
  • Upload date:
  • Size: 702.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for randomgen-1.16.6.tar.gz
Algorithm Hash digest
SHA256 697041f26e0b80c93fb880a7c6ca2ed7853df608392b03fa3533e7f14482d8d6
MD5 7b78dc755d5e852600c9531575b2adce
BLAKE2b-256 5bdbd8214e4ee7452f508c1236ef8ab355e9fd7e8bf2bf294b89e51a818686f6

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for randomgen-1.16.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b7c0887bfd1e5fb970f62941580e7a9676829b646a7bb5eaae59291bc3381ef3
MD5 0269eba303ad0c20a512905c94fd9912
BLAKE2b-256 bb32af5663a57380c0f91116e06dc7bd6fae084a69937ab80a79f24720eabac7

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for randomgen-1.16.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 92c6630d1cc7de22c405837896d8dd9a6477f5c666f06a349e840e8dd0b3d53f
MD5 caaf340076598cf0d9534d1e4f0f7c7a
BLAKE2b-256 6a13130fb078e8e45964a157113050c67263f8db594ad3ade6377f004e129b96

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.6-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 72b1d40c7509cb5108730fc0acd58ba6952a3386ec2b34b1d82972163b6a5115
MD5 c609a33eca206c4bdcfb0acc13c82ca0
BLAKE2b-256 8a2a4469f75cf392a5f56ec95b1f3582b4a8019e5dfaa9fad51a80f4a0d78438

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.6-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 52e7d61a3f84d20539ed1c78be681772bf1a014bea4be18f471164462bb01163
MD5 8ba641ff091197b57fac6b28973ef782
BLAKE2b-256 7e6a0f8c8ed3204c2d136e4006f5e64a457a347f02ca805e2a293a326c717510

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.6-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b7003a1897c51208e46391da760542abceb16cf7052cc9c7df0c524b8971e27c
MD5 e53266983e9f46ba33a1980068298bbf
BLAKE2b-256 db5f53b3503f62a04d3b2f6a3c14941f640878344a997f6c23796e7c6a71cabe

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.8

File hashes

Hashes for randomgen-1.16.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6b2035698548cf6daa529bb02ac53f7d69542a5fd4d784a293bd92e02245d6b7
MD5 a28b3da1e0192b650b237732ebbb9f63
BLAKE2b-256 3f095d08008a66df4d5d7932b46d9d4f84050f8ab04d9245f0a9b0f2f0804c06

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp36-cp36m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.8

File hashes

Hashes for randomgen-1.16.6-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d454742c543d4d1111249b50f10b23a50002652c3ea58a88009883dc97eeb94d
MD5 314bddf065bfa16c98634f88eadea31d
BLAKE2b-256 ae11a73ee260a35190b4ab3d26957b47bce8555a3727d7012805b7e4e8328ed5

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.6-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d9b3d5cd6b0923de47610edd3e0ad154e7244dbd19577da4099eaf39524a4132
MD5 e65525cd798ea0286e4df48631be9b37
BLAKE2b-256 14200880f0581d5d9311ee0bea0f4aa9da95d46a21ac6f0740f15d372ab1e3d1

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.6-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f35093c8f6fe437e87058f5698e1278f3e82bf8e8eee4b8575bdee81fc0c7b80
MD5 1aded8d6749dfae4aad90198c8776ba0
BLAKE2b-256 efd794debbc52b24b5b1576eae909070aedc3b9fca60fbc1ff87762dab90d7f6

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.6-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e24115cbd55f912938b0fe0583d48d1cd15f56f7491b16025ff3722f552ab947
MD5 dcbd43c451e5b39f112696478b785044
BLAKE2b-256 99619f63607df0b423aefb36cb4df78c368ec2f150315c88bdfcc96c29274bfb

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.5.6

File hashes

Hashes for randomgen-1.16.6-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 abc43084a17a05af9e39b57a5114514a3bd92a6771f01f4d412e53e7149b876c
MD5 0f7c6c0f96793b0caf62183ff449858a
BLAKE2b-256 15d6abfb88fbf510f40641c568739ed89af2bf9a0f166b9730dcc7b82a430219

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp35-cp35m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.5.6

File hashes

Hashes for randomgen-1.16.6-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 3a49e05697bd831b03b2f77553fe0bbb1fff68e2d09ecf276746bce5777d4352
MD5 ed59c80c2c0d0e4b8f67ac01d98f50d2
BLAKE2b-256 03632e3324c188371dbe0f3b64452239bf47fb0e00387cacb915ff955baba582

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.6-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 46b35761d794acb0f9320ed989ba173c3137e8b70d1dbf5f2f6dcbaa5726e4d7
MD5 7acc1f1144b6b1948d6abc4198e53978
BLAKE2b-256 e0e5ea7922b1c5c080e4bd9b7bbe78374d7ad7ad99ca973185f50ab029ce75c8

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.6-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e5095097db824256d2792c40bd1a957680f71145e5a934aa3db63d27ee784587
MD5 f8d7e8fd5ab615e0208b2fe10da87dad
BLAKE2b-256 df7215475f8d654f53e19c0658c3ca2c1ee957ddf6f8c90149bc43e70ad4d479

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.6-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1e0483fc015aa0a6ab1aecfcbce3ac5122913b74fda466841e306bdd3edad2c9
MD5 5185fb841d5626886f13df5b8b69af0f
BLAKE2b-256 a8e00331297e915b7ab065e620f9a7badd1928ea2c1f95dc100a45c18895d2a9

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.6-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8a0b6462fa12464ea195f627ffa9b3e4091d7a4eee4e59a81f709cb36900ac0c
MD5 c0b82cb87ad743d57c085e59ecc89ff0
BLAKE2b-256 f106c06c618d6bf6491422c1a4bf9f943fa3840ee4353dffb85bc8071375e9de

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.6-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 22409e370d7aada188a8cba619c74573e831e5a7a70d307d669a0b9c5dfae07b
MD5 487d348f7dddf49c90d295931903f865
BLAKE2b-256 cc3b5552fbad60f595735ca7bdd85fb808f9fb9b148bc0d53deb1f95b5cae671

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.16

File hashes

Hashes for randomgen-1.16.6-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 bc7b47f883f2ef1568327d9f08045dfc7177b562cd12dec4e0218c6c415f2848
MD5 2d2d9ce591b8f4e19b858f0a466c9841
BLAKE2b-256 1613a94be80f1da692ecc9b95806409bf8ff84019daa33cf8bc6f2617d61459d

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp27-cp27m-win32.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.16

File hashes

Hashes for randomgen-1.16.6-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 5e66cfd8f06613c8e3d51fdc2542f323f095cdfcfe3e0088d0eb93033156e63c
MD5 1cffd91a6082bb489710c066a2236ca8
BLAKE2b-256 d3223302070184818fe1fb724967935961d11033869851528aac35c21e68d378

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.6-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 eb4424c153db1660a1297ebbdeb52da3db3823578cbbf2bed806c88dc7cc2402
MD5 31117d3ff1287b101927979619f40f1f
BLAKE2b-256 8735140ab7f243fd6e35a49eded845ed16a61bd4970a336618a851f24791c7eb

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: randomgen-1.16.6-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.7

File hashes

Hashes for randomgen-1.16.6-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2c6d8c5655b9fe9d63041973611b13400b94f501c73eec2b6f8826d00e063e29
MD5 a3552ca5a8027548716bffacc7b48b51
BLAKE2b-256 67d4a1425f3cbda0faf708c6cf6e4572c761160fc70e0feca30cb83e1bddb49b

See more details on using hashes here.

File details

Details for the file randomgen-1.16.6-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for randomgen-1.16.6-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bb0fdbddea982040eb478699248bf1688581ff39ba8360b121b0669494c240e5
MD5 b9e1e29b5f78eaabc1fe3a0e5cab804b
BLAKE2b-256 0c4a0d3c80a1a8e013583f819700d4e1db9d171bc4cdd0050b0a97cf3fea156f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page