Skip to main content

A set of Monte Carlo based tools to create test statistics for four non-parametric rank-based tests: Mann-Whitney (MW), Kruskal-Wallis (KW), Kolmogorov-Smirnov (KS) and Kuiper (K).

Project description

Rank Based Monte Carlo

This package produces the null hypothesis distribution of four non-parametric tests: Mann-Whitney (MW), Kruskal-Wallis (KW), Kolmogorov-Smirnov (KS) and Kuiper (K).

In all cases, the distribution is created by initializing the class (MonteCarloMannWhitney, MonteCarloKruskalWallis, MonteCarloKolmogorovSmirnov, MonteCarloKuiper) from the package and calling the method PrintCriticalValueTable. For instance, the KW test statistics can be accomplished with the following code:


from RankBasedMonteCarlo import MonteCarloKruskalWallis

if __name__ == '__main__':
    kw = MonteCarloKruskalWallis()
    criticalValues, pvalue = kw.PrintCriticalValueTable((6, 45, 30), 10000, 9)

The class is imported from the package on the first line. Within the if statement, an instance of the class is created (kw) and the critical values and pvalue is determined on the next line. The PrintCriticalValueTable method accepts the same parameters regardless of the statistical test:

  1. ns : tuple : A tuple listing the number of observations per group. For instance (6,5)
  2. reps : int : The number of repetitions the process completes before producing critical values. Default is 10,000.
  3. observedValue : float : Optional value used to determine p-value
  4. PrintToScreen : bool : Specifies if the critical values are printed to the screen. Defaults to True.
  5. cvs : list : Specifies a list of critical values.

Installation

This package can be installed using pip or conda (Anaconda):

Using Pip


pip install RankBasedMonteCarlo

Using Conda


conda install -c tazzben rankbasedmontecarlo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rankbasedmontecarlo-0.1.4.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

rankbasedmontecarlo-0.1.4-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file rankbasedmontecarlo-0.1.4.tar.gz.

File metadata

  • Download URL: rankbasedmontecarlo-0.1.4.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for rankbasedmontecarlo-0.1.4.tar.gz
Algorithm Hash digest
SHA256 5242ebeab833dd57ae523297b8c033ce7df63307ba444beb03fa2175eb37f5e6
MD5 670b9935a3f4f554c298638d5d312b10
BLAKE2b-256 456d1b931e385a867b0a63abe33fa3e98ac3d078cea3624aa00b6535ba7a498d

See more details on using hashes here.

File details

Details for the file rankbasedmontecarlo-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for rankbasedmontecarlo-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 896cf113bf1eb1c00a15566f35f9158b05d0daaca77aa7cbc9f761d24695145a
MD5 c93da9f4506e07756164bc658e0206f9
BLAKE2b-256 3050e5784de17799b547d357e988072b768bd0d4bb5895a8cfc8d5f178ca2f56

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page