ranx: A Blazing Fast Python Library for Ranking Evaluation and Comparison
Project description
🔥 News
-
📌 [July 27, 2022]
ranx
will be featured in CIKM 2022, the 31st ACM International Conference on Information and Knowledge Management! -
[August 29, 2022]
ranx
0.2.9
is out.
Filetypes are now automatically inferred from file extensions (.json
→json
,.trec
→trec
,.txt
→trec
). Default behavior can be overridden with thekind
parameter (this should allow for backward compatibility).
Two-sided Paired Student's t-Test
is now the default statistical test used when callingcompare
(it is much faster thanFisher's
and they usually agree).
Loading / savingQrels
andRun
from / tojson
files is now much faster thanks to orjson. -
[June 29, 2022] Added support for Tukey's HSD Test.
-
[June 28, 2022] Added support for Bpref and Rank-biased Precision (RBP) metrics.
-
[June 9, 2022] Added support for 25 fusion algorithms, six normalization strategies, and an automatic fusion optimization functionality in
v.0.2
.
Check out the official documentation and Jupyter Notebook for further details on fusion and normalization.
⚡️ Introduction
ranx is a library of fast ranking evaluation metrics implemented in Python, leveraging Numba for high-speed vector operations and automatic parallelization. It offers a user-friendly interface to evaluate and compare Information Retrieval and Recommender Systems. ranx allows you to perform statistical tests and export LaTeX tables for your scientific publications. Moreover, ranx provides several fusion algorithms and normalization strategies, and an automatic fusion optimization functionality. ranx was featured in ECIR 2022, the 44th European Conference on Information Retrieval.
If you use ranx to evaluate results or conducting experiments involving fusion for your scientific publication, please consider citing it.
For a quick overview, follow the Usage section.
For a in-depth overview, follow the Examples section.
✨ Features
Metrics
- Hits
- Hit Rate
- Precision
- Recall
- F1
- r-Precision
- Bpref
- Rank-biased Precision (RBP)
- Mean Reciprocal Rank (MRR)
- Mean Average Precision (MAP)
- Normalized Discounted Cumulative Gain (NDCG)
The metrics have been tested against TREC Eval for correctness.
Statistical Tests
Please, refer to Smucker et al., Carterette, and Fuhr for additional information on statistical tests for Information Retrieval.
Off-the-shelf Qrels
You can load qrels from ir-datasets as simply as:
qrels = Qrels.from_ir_datasets("msmarco-document/dev")
A full list of the available qrels is provided here.
Fusion Algorithms
Name | Name | Name | Name | Name |
---|---|---|---|---|
CombMIN | CombMNZ | RRF | MAPFuse | BordaFuse |
CombMED | CombGMNZ | RBC | PosFuse | Weighted BordaFuse |
CombANZ | ISR | WMNZ | ProbFuse | Condorcet |
CombMAX | Log_ISR | Mixed | SegFuse | Weighted Condorcet |
CombSUM | LogN_ISR | BayesFuse | SlideFuse | Weighted Sum |
Please, refer to the documentation for further details.
Normalization Strategies
Please, refer to the documentation for further details.
🔌 Installation
pip install ranx
💡 Usage
Create Qrels and Run
from ranx import Qrels, Run
qrels_dict = { "q_1": { "d_12": 5, "d_25": 3 },
"q_2": { "d_11": 6, "d_22": 1 } }
run_dict = { "q_1": { "d_12": 0.9, "d_23": 0.8, "d_25": 0.7,
"d_36": 0.6, "d_32": 0.5, "d_35": 0.4 },
"q_2": { "d_12": 0.9, "d_11": 0.8, "d_25": 0.7,
"d_36": 0.6, "d_22": 0.5, "d_35": 0.4 } }
qrels = Qrels(qrels_dict)
run = Run(run_dict)
Evaluate
from ranx import evaluate
# Compute score for a single metric
evaluate(qrels, run, "ndcg@5")
>>> 0.7861
# Compute scores for multiple metrics at once
evaluate(qrels, run, ["map@5", "mrr"])
>>> {"map@5": 0.6416, "mrr": 0.75}
Compare
from ranx import compare
# Compare different runs and perform Two-sided Paired Student's t-Test
report = compare(
qrels=qrels,
runs=[run_1, run_2, run_3, run_4, run_5],
metrics=["map@100", "mrr@100", "ndcg@10"],
max_p=0.01 # P-value threshold
)
Output:
print(report)
# Model MAP@100 MRR@100 NDCG@10
--- ------- -------- -------- ---------
a model_1 0.320ᵇ 0.320ᵇ 0.368ᵇᶜ
b model_2 0.233 0.234 0.239
c model_3 0.308ᵇ 0.309ᵇ 0.330ᵇ
d model_4 0.366ᵃᵇᶜ 0.367ᵃᵇᶜ 0.408ᵃᵇᶜ
e model_5 0.405ᵃᵇᶜᵈ 0.406ᵃᵇᶜᵈ 0.451ᵃᵇᶜᵈ
Fusion
from ranx import fuse, optimize_fusion
best_params = optimize_fusion(
qrels=train_qrels,
runs=[train_run_1, train_run_2, train_run_3],
norm="min-max", # The norm. to apply before fusion
method="wsum", # The fusion algorithm to use (Weighted Sum)
metric="ndcg@100", # The metric to maximize
)
combined_test_run = fuse(
runs=[test_run_1, test_run_2, test_run_3],
norm="min-max",
method="wsum",
params=best_params,
)
📖 Examples
Name | Link |
---|---|
Overview | |
Qrels and Run | |
Evaluation | |
Comparison and Report | |
Fusion |
📚 Documentation
Browse the documentation for more details and examples.
🎓 Citation
If you use ranx to evaluate results for your scientific publication, please consider citing it:
@inproceedings{bassani2022ranx,
author = {Elias Bassani},
title = {ranx: {A} Blazing-Fast Python Library for Ranking Evaluation and Comparison},
booktitle = {{ECIR} {(2)}},
series = {Lecture Notes in Computer Science},
volume = {13186},
pages = {259--264},
publisher = {Springer},
year = {2022}
}
🎁 Feature Requests
Would you like to see other features implemented? Please, open a feature request.
🤘 Want to contribute?
Would you like to contribute? Please, drop me an e-mail.
📄 License
ranx is an open-sourced software licensed under the MIT license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.