Skip to main content

Python package for raphtory, a temporal graph library

Project description


Raphtory

Test and Build Latest Release Issues Crates.io PyPI PyPI Downloads Launch Notebook

🌍 Website   📒 Documentation   Pometry   🧙Tutorial   🐛 Report a Bug   Join Slack


Raphtory is an in-memory vectorised graph database written in Rust with friendly Python APIs on top. It is blazingly fast, scales to hundreds of millions of edges on your laptop, and can be dropped into your existing pipelines with a simple pip install raphtory.

It supports time traveling, full-text search, multilayer modelling, and advanced analytics beyond simple querying like automatic risk detection, dynamic scoring, and temporal motifs.

If you wish to contribute, check out the open list of issues, bounty board or hit us up directly on slack. Successful contributions will be reward with swizzling swag!

Installing Raphtory

Raphtory is available for Python and Rust.

For python you must be using version 3.8 or higher and can install via pip:

pip install raphtory

For Rust, Raphtory is hosted on crates for Rust version 1.77 or higher and can be included in your project via cargo add:

cargo add raphtory

Running a basic example

Below is a small example of how Raphtory looks and feels when using our Python APIs. If you like what you see, you can dive into a full tutorial here.

from raphtory import Graph
from raphtory import algorithms as algo
import pandas as pd

# Create a new graph
graph = Graph()

# Add some data to your graph
graph.add_node(timestamp=1, id="Alice")
graph.add_node(timestamp=1, id="Bob")
graph.add_node(timestamp=1, id="Charlie")
graph.add_edge(timestamp=2, src="Bob", dst="Charlie", properties={"weight": 5.0})
graph.add_edge(timestamp=3, src="Alice", dst="Bob", properties={"weight": 10.0})
graph.add_edge(timestamp=3, src="Bob", dst="Charlie", properties={"weight": -15.0})

# Check the number of unique nodes/edges in the graph and earliest/latest time seen.
print(graph)

results = [["earliest_time", "name", "out_degree", "in_degree"]]

# Collect some simple node metrics Ran across the history of your graph with a rolling window
for graph_view in graph.rolling(window=1):
    for v in graph_view.nodes:
        results.append(
            [graph_view.earliest_time, v.name, v.out_degree(), v.in_degree()]
        )

# Print the results
print(pd.DataFrame(results[1:], columns=results[0]))

# Grab an edge, explore the history of its 'weight'
cb_edge = graph.edge("Bob", "Charlie")
weight_history = cb_edge.properties.temporal.get("weight").items()
print(
    "The edge between Bob and Charlie has the following weight history:", weight_history
)

# Compare this weight between time 2 and time 3
weight_change = cb_edge.at(2)["weight"] - cb_edge.at(3)["weight"]
print(
    "The weight of the edge between Bob and Charlie has changed by",
    weight_change,
    "pts",
)

# Run pagerank and ask for the top ranked node
top_node = algo.pagerank(graph).top_k(1)
print(
    "The most important node in the graph is",
    top_node[0][0],
    "with a score of",
    top_node[0][1],
)

Output:

Graph(number_of_edges=2, number_of_nodes=3, earliest_time=1, latest_time=3)

|   | earliest_time | name    | out_degree | in_degree |
|---|---------------|---------|------------|-----------|
| 0 | 1             | Alice   | 0          | 0         |
| 1 | 1             | Bob     | 0          | 0         |
| 2 | 1             | Charlie | 0          | 0         |
| 3 | 2             | Bob     | 1          | 0         |
| 4 | 2             | Charlie | 0          | 1         |
| 5 | 3             | Alice   | 1          | 0         |
| 6 | 3             | Bob     | 1          | 1         |
| 7 | 3             | Charlie | 0          | 1         |

The edge between Bob and Charlie has the following weight history: [(2, 5.0), (3, -15.0)]

The weight of the edge between Bob and Charlie has changed by 20.0 pts

The top node in the graph is Charlie with a score of 0.4744116163405977

GraphQL

As part of the python APIs you can host your data within Raphtory's GraphQL server. This makes it super easy to integrate your graphy analytics with web applications.

Below is a small example creating a graph, running a server hosting this data, and directly querying it with our GraphQL client.

from raphtory import Graph
from raphtory.graphql import GraphServer
import pandas as pd
import os

# URL for lord of the rings data from our main tutorial
url = "https://raw.githubusercontent.com/Raphtory/Data/main/lotr-with-header.csv"
df = pd.read_csv(url)

# Load the lord of the rings graph from the dataframe
graph = Graph()
graph.load_edges_from_pandas(df,"time","src_id","dst_id")

#Create a working_dir for your server and save your graph into it 
#You can save any number of graphs here or create them via the server ones its running
os.makedirs("graphs/", exist_ok=True)
graph.save_to_file("graphs/lotr_graph")

# Launch the server and get a client to it.
server = GraphServer(work_dir="graphs/").start()
client = server.get_client()

#Run a basic query to get the names of the characters + their degree
results = client.query("""{
             graph(path: "lotr_graph") {
                 nodes {
                    list{
                        name
                        degree
                       }   
                    }
                 }
             }""")

print(results)

Output:

Loading edges: 100%|██████████████| 2.65K/2.65K [00:00<00:00, 984Kit/s]
Playground: http://localhost:1736
{'graph': 
    {'nodes': 
        [{'name': 'Gandalf', 'degree': 49}, 
         {'name': 'Elrond', 'degree': 32}, 
         {'name': 'Frodo', 'degree': 51}, 
         {'name': 'Bilbo', 'degree': 21}, 
         ...
        ]
    }
}

GraphQL Playground

When you host a Raphtory GraphQL server you get a web playground bundled in, accessible on the same port within your browser (defaulting to 1736). Here you can experiment with queries on your graphs and explore the schema. An example of the playground can be seen below, running the same query as in the python example above.

GraphQL Playground

Getting started

To get you up and running with Raphtory we provide a full set of tutorials on the Raphtory website:

If API documentation is more your thing, you can dive straight in here!

Online notebook sandbox

Want to give this a go, but can't install? Check out Raphtory in action with our interactive Jupyter Notebooks! Just click the badge below to launch a Raphtory sandbox online, no installation needed.

Binder

Community

Join the growing community of open-source enthusiasts using Raphtory to power their graph analysis!

  • Follow Slack for the latest Raphtory news and development

  • Join our Slack to chat with us and get answers to your questions!

Contributors

Bounty board

Raphtory is currently offering rewards for contributions, such as new features or algorithms. Contributors will receive swag and prizes!

To get started, check out our list of desired algorithms which include some low hanging fruit (🍇) that are easy to implement.

Benchmarks

We host a page which triggers and saves the result of two benchmarks upon every push to the master branch. View this here

License

Raphtory is licensed under the terms of the GNU General Public License v3.0 (check out our LICENSE file).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

raphtory-0.11.2-cp312-none-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

raphtory-0.11.2-cp312-cp312-manylinux_2_28_x86_64.whl (19.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

raphtory-0.11.2-cp312-cp312-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

raphtory-0.11.2-cp312-cp312-macosx_11_0_arm64.whl (16.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

raphtory-0.11.2-cp312-cp312-macosx_10_12_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

raphtory-0.11.2-cp311-none-win_amd64.whl (15.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

raphtory-0.11.2-cp311-cp311-manylinux_2_28_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

raphtory-0.11.2-cp311-cp311-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

raphtory-0.11.2-cp311-cp311-macosx_11_0_arm64.whl (16.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

raphtory-0.11.2-cp311-cp311-macosx_10_12_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

raphtory-0.11.2-cp310-none-win_amd64.whl (15.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

raphtory-0.11.2-cp310-cp310-manylinux_2_28_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

raphtory-0.11.2-cp310-cp310-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

raphtory-0.11.2-cp310-cp310-macosx_11_0_arm64.whl (16.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

raphtory-0.11.2-cp310-cp310-macosx_10_12_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

raphtory-0.11.2-cp39-none-win_amd64.whl (15.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

raphtory-0.11.2-cp39-cp39-manylinux_2_28_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

raphtory-0.11.2-cp39-cp39-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

raphtory-0.11.2-cp39-cp39-macosx_11_0_arm64.whl (16.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

raphtory-0.11.2-cp39-cp39-macosx_10_12_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

raphtory-0.11.2-cp38-none-win_amd64.whl (15.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

raphtory-0.11.2-cp38-cp38-manylinux_2_28_x86_64.whl (19.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

raphtory-0.11.2-cp38-cp38-manylinux_2_28_aarch64.whl (19.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

raphtory-0.11.2-cp38-cp38-macosx_11_0_arm64.whl (16.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

raphtory-0.11.2-cp38-cp38-macosx_10_12_x86_64.whl (17.1 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file raphtory-0.11.2-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 8bcb0ba929b1c1197d564f5d311d2db834a9dc8cfefb3624c7a8a5a67a498a7a
MD5 97f636d72496f7647e243af89362a953
BLAKE2b-256 1288749dc031eeb1520225cb0be3b95cdc1cdd13146506f3801f4c198768bb94

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 de6947aa5c96043476575567b93c560994c92473ae1bd0ea01a5850c04a83801
MD5 9ade96c192612ec0424261d4a1e9c730
BLAKE2b-256 3abfdbf6393d1c3800eae4911432e79e9e9eb2d2dff1ab55f05fd01b79985255

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8601bbcf1b9c9ff5fd0e99cd0f52b489c1605272357b294da06b70bad1c9249e
MD5 fe8f93bedc2fc719f18baea95f92a1e8
BLAKE2b-256 85e4836c2cf5bb0e561619eddc3b220d002ad949ea9246928348735c82e51b04

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f773d4e62041b4390e5be55e316d23172dd92c4686f88238ac96439bf7769d77
MD5 7138772d4e48d7938fbb25877b5bc97b
BLAKE2b-256 20ee0d09bcc7c521693a64194df137c1e290d49900b1911ec870859d248d83af

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e69722073399009a1094bbbcff29b97cacc4ba78417e765de37406481bf5da8f
MD5 da75d3a640eba13457e9d7dda1ac1dbc
BLAKE2b-256 6714bcd1c846e39236b4c1a5b3fa99c3f9846d9a75c131dc336d8e223d619084

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 874e336fa9c0d13953e08747a1e475027e61045f4541a245101a6b3912f1131a
MD5 3109420ce287bf201c5fd02811cc427c
BLAKE2b-256 22791e1fe9411af8a423cd0e076fb66b69f36b746a887b11a5908281a5472e72

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 aee0b2b570a1cec6b9888fd0a244702ed23a1223e7e148238b62bfdd6677989b
MD5 3557f8824f0e53117f15f5efda863760
BLAKE2b-256 3cd6f645b297752971945b87da11771216f1656c8ad0eb424d0c2940e05a9e18

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5be655267d436e74349c0d453d75754a94336b8cad58a8cc61c70fb0395a0bdc
MD5 a26b638f7216d3fac7559d59303f766c
BLAKE2b-256 20932b961fdef9d4d896d2da998cd3016b74e45710a7423ec5475544d39b6ef8

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7292df71cc88112bf2b7aae2a4581e3e775ff31575b448b1d2a5e76efd38eee
MD5 2397d3139b309583507a44518fcc963c
BLAKE2b-256 6adc412299b8b36ac4554b10f398191b1b21814d4f6e23358713449c121bd6fe

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ce29e572822544d30449cd7885d5b5e0a3cd09b1e875534473757b75ceb04ffd
MD5 f8e6cd8fbd804704c46b548b4664e801
BLAKE2b-256 5e91b446de9c7ae308ccf74d9fff45e8c9b44912c6c0a630043af90453ac5b23

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 70da32ea3fb0ebd521bbd9441f2eae55ea76bc680146b93b0401d25cc50701f2
MD5 34b008bdd28f4748a8a010e6bfdd3310
BLAKE2b-256 878b18adf0e30a8247828bedd4d7020d1e2f8e19d7285d9f4251bb5f5955a414

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d5e9b4db4e688648ca4b4758411e2d6a9724e00e5a6bd238e8d129a572f5206c
MD5 8015a637b59f9e546e88f174f335dff7
BLAKE2b-256 10e8fbf3e40d55c59dd7bd51c1b61531fe173ead3270651c9a527faf29fff662

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0b58dab0e0bc433eae0c21661822211ba5a39fe5683120d635afb50710a75d59
MD5 455cc2eb030cfea00907f7822219c1c1
BLAKE2b-256 7d8796b39147015a6a2e1839ab9cc5eda6be71b00baf6d0cf63ab9f37d09e74d

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c850329d91e93fb4f12a5046150b710830dfe5dfd2e8ead8cfe7a03facab08f7
MD5 fe96bb45a1abc1e6b7a0d8ebbea8e111
BLAKE2b-256 85b73d8f9af20e60beb8f4afacda85149b4f1ff1804ff69e783b55cb94364630

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 3ebe9de4dc8109591f15b400d8aed67de67bb563e36b6ba0743679dfb9fb9782
MD5 2a72d7ed08923f2328a273f878b82250
BLAKE2b-256 442e00c0e99696d1d32ca427a293e0a004cc305f07da4362782c4916be3d884e

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp39-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.11.2-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for raphtory-0.11.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 875861b0ba77af3abca541d12ea3eceb8670471dfde8abe7cbbc5d24d39e57cc
MD5 4797084e4a087031d57d3a5a2394d4da
BLAKE2b-256 1b914705c0f5a3cbede511ef5fb0519d9cac62458b43fac7f895ae01ad725cd4

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f58ed002f043becfa813dbdfb68e4f38b5fbebe0b1dab4c5ac96e96b65e75caa
MD5 0e453a9310b1948e6d9026732b86450d
BLAKE2b-256 36ec41aef357c2aea92867b76d26cef5471e0e9ec246bc5d86ebee1359a8e384

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ef80b5b5e4a0c8f07d8b68fbd7958b8d5416ce48f2b472e726cee232cad669b3
MD5 12f77aff827a9d81e7ab29fe5584ae0c
BLAKE2b-256 e5400eb5913a529d4711c9d3e5dee3b74125b8228fbb4a20518811fb22e655dc

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 14cccb1d0cbb85005a8273e89a6d0bfece45df95dc956e4bfe5129966f68b7b5
MD5 73a57bddd1f3aa0638d9b31534b5f31b
BLAKE2b-256 b4964e552aeb965150a8f1cc7333c93212e4330f6b4ad57976e7d1981106c8d2

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0271201572e31b018bfe5c33a0e018f18666ce87944bfcb146bcd2e8627a48c0
MD5 4492ce5dcb592db579e76a3d797bb9bd
BLAKE2b-256 dc4c1ae5f4593221b80c87bc5ff853c88db8d88b32cf046154dc3e865175f24c

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp38-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.11.2-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for raphtory-0.11.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 2d17695d667c85f994062718d057db4c368645dd71f1233d85c6fa0f9908c032
MD5 25e41c8b1957bf64dae45f99088e12a0
BLAKE2b-256 f9497bc443524d7577f5c08259163696753db598d0a839e789161913e7ff2807

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c6bc78401fb3fbe62f0c3cc754c1c3e82a129a3cf0accfdc046b29748c8a1f3e
MD5 e666d6e9944a9432c93b5919752d3d06
BLAKE2b-256 4a5ca11b94cb66b08876d56f369eb0fa7e249c309251c3aeb17c29440eb34c90

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c0ce99b3626a96e4a30b51307eb402da5be7cbab5f9671795e9d21d851b2f265
MD5 428e87762e6c7b94c26cfda3c4ca8d29
BLAKE2b-256 cd0ae226d74e4ce6f178a80e1bf36ab12feef571947df25302d565688e97e894

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8cbb962892e8141a01b6bc2370d045b04492c3bd47068a55cd8200e7f6d0e178
MD5 3dceeebd176e1d9bb227fd2cf7b851fa
BLAKE2b-256 0a3a5691e1e723708039276eccdca84e6152c8cd807344d02a34f3cd48d068d4

See more details on using hashes here.

File details

Details for the file raphtory-0.11.2-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.11.2-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2ad1a54b172ed586423370de18a8cc569c1d9f28659439efb6947b862955b261
MD5 b0f674759d66f6c2c0b1ca406251a574
BLAKE2b-256 1f7fc0e06d275517d6d6983cfb47be74b80b0fcbf10fa8f7de0ad161c7abef6a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page