Skip to main content

Python package for raphtory, a temporal graph library

Project description


Raphtory

Test and Build Latest Release Issues Crates.io PyPI Launch Notebook

🌍 Website   📒 Documentation   Pometry   🧙🏻‍ Tutorial   🐛 Report a Bug   Join Slack


Raphtory is an in-memory graph tool written in Rust with friendly Python APIs on top. It is blazingly fast, scales to hundreds of millions of edges on your laptop, and can be dropped into your existing pipelines with a simple pip install raphtory.

It supports time traveling, multilayer modelling, and advanced analytics beyond simple querying like community evolution, dynamic scoring, and mining temporal motifs.

If you wish to contribute, check out the open list of issues, bounty board or hit us up directly on slack. Successful contributions will be reward with swizzling swag!

Running a basic example

from raphtory import Graph
import pandas as pd

# Create a new graph
graph = Graph()

# Add some data to your graph
graph.add_vertex(timestamp=1, id="Alice")
graph.add_vertex(timestamp=1, id="Bob")
graph.add_vertex(timestamp=1, id="Charlie")
graph.add_edge  (timestamp=2, src="Bob",   dst="Charlie", properties={"weight":5.0})
graph.add_edge  (timestamp=3, src="Alice", dst="Bob",     properties={"weight":10.0})
graph.add_edge  (timestamp=3, src="Bob",   dst="Charlie", properties={"weight":-15.0})

# Check the number of unique nodes/edges in the graph and earliest/latest time seen.
print(graph)

results = [["earliest_time", "name", "out_degree", "in_degree"]]

# Collect some simple vertex metrics Ran across the history of your graph with a rolling window
for graph_view in graph.rolling(window=1):
    for v in graph_view.vertices():
        results.append([graph_view.earliest_time(), v.name(), v.out_degree(), v.in_degree()])

# Print the results
print(pd.DataFrame(results[1:], columns=results[0]))

# Grab an edge, explore the history of its 'weight' 
cb_edge = graph.edge("Bob","Charlie")
weight_history = cb_edge.property_history("weight")
print("The edge between Bob and Charlie has the following weight history:", weight_history)

# Compare this weight between time 2 and time 3
weight_change = cb_edge.at(2)["weight"] - cb_edge.at(3)["weight"]
print("The weight of the edge between Bob and Charlie has changed by",weight_change,"pts")
Graph(number_of_edges=2, number_of_vertices=3, earliest_time=1, latest_time=3)

|   | earliest_time | name    | out_degree | in_degree |
|---|---------------|---------|------------|-----------|
| 0 | 1             | Alice   | 0          | 0         |
| 1 | 1             | Bob     | 0          | 0         |
| 2 | 1             | Charlie | 0          | 0         |
| 3 | 2             | Bob     | 1          | 0         |
| 4 | 2             | Charlie | 0          | 1         |
| 5 | 3             | Alice   | 1          | 0         |
| 6 | 3             | Bob     | 1          | 1         |
| 7 | 3             | Charlie | 0          | 1         |

The edge between Bob and Charlie has the following weight history: [(2, 5.0), (3, -15.0)]

The weight of the edge between Bob and Charlie has changed by 20.0 pts

Installing Raphtory

Raphtory is available for Python and Rust as of version 0.3.0. You should have Python version 3.10 or higher and it's a good idea to use conda, virtualenv, or pyenv.

pip install raphtory

Examples and Notebooks

Check out Raphtory in action with our interactive Jupyter Notebook! Just click the badge below to launch a Raphtory sandbox online, no installation needed.

Binder

Want to give Raphtory a go on your laptop? You can checkout out the latest documentation and complete list of available algorithms or hop on our notebook based tutorials below!

Getting started

Type Description
Tutorial Building your first graph

Developing an end-to-end application

Type Description
Notebook Use our powerful time APIs to find pump and dump scams in popular NFTs

Benchmarks

We host a page which triggers and saves the result of two benchmarks upon every push to the master branch.

View this here https://pometry.github.io/Raphtory/dev/bench/

Bounty board

Raphtory is currently offering rewards for contributions, such as new features or algorithms. Contributors will receive swag and prizes!

To get started, check out our list of desired algorithms at https://github.com/Raphtory/Raphtory/discussions/categories/bounty-board which include some low hanging fruit (🍇) that are easy to implement.

Community

Join the growing community of open-source enthusiasts using Raphtory to power their graph analysis projects!

  • Follow Slack for the latest Raphtory news and development

  • Join our Slack to chat with us and get answers to your questions!

Contributors

Want to get involved? Please join the Raphtory Slack group and speak with us on how you could pitch in!

License

Raphtory is licensed under the terms of the GNU General Public License v3.0 (check out our LICENSE file).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

raphtory-0.4.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.9 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARMv7l

raphtory-0.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.2 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

raphtory-0.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.3 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

raphtory-0.4.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.9 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARMv7l

raphtory-0.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.2 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

raphtory-0.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.3 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

raphtory-0.4.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.9 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARMv7l

raphtory-0.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.2 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

raphtory-0.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.3 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

raphtory-0.4.0-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.9 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARMv7l

raphtory-0.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.2 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

raphtory-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

raphtory-0.4.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARMv7l

raphtory-0.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

raphtory-0.4.0-cp311-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.11Windows x86-64

raphtory-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

raphtory-0.4.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARMv7l

raphtory-0.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

raphtory-0.4.0-cp311-cp311-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

raphtory-0.4.0-cp311-cp311-macosx_10_7_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.11macOS 10.7+ x86-64

raphtory-0.4.0-cp310-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10Windows x86-64

raphtory-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

raphtory-0.4.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARMv7l

raphtory-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

raphtory-0.4.0-cp310-cp310-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

raphtory-0.4.0-cp310-cp310-macosx_10_7_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10macOS 10.7+ x86-64

raphtory-0.4.0-cp39-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9Windows x86-64

raphtory-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

raphtory-0.4.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARMv7l

raphtory-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

raphtory-0.4.0-cp39-cp39-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

raphtory-0.4.0-cp39-cp39-macosx_10_7_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9macOS 10.7+ x86-64

raphtory-0.4.0-cp38-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8Windows x86-64

raphtory-0.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

raphtory-0.4.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARMv7l

raphtory-0.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

raphtory-0.4.0-cp37-none-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.7Windows x86-64

raphtory-0.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

raphtory-0.4.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (5.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARMv7l

raphtory-0.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

File details

Details for the file raphtory-0.4.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 cfae3f06e4271a7a561b17023f6ec9c00785f3db4f179250fbcea6a30fd75a17
MD5 bf83b66b265117319ac664c026ed0467
BLAKE2b-256 85c0b6cb1cb97af733cc420a97cd78fc6d5902f8a80e81e55ca85cdfb85db845

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15620a465f3500739c495ab8ce1305bf5239f612013d7d66cac91e01b3b8a284
MD5 5a3a7b384507d8d707634275b4a05236
BLAKE2b-256 e4072121d1a68b49e6604a9c03c70feab4d8a1b225a69831bc13366e3b7b1451

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2d4dd26a0181c5f41dce69cc190e5396398870cd5f6d212de189d608ed43a15
MD5 62234b9398da7c024f2d0b5c5dfba7d9
BLAKE2b-256 4d9aa3b2d7227ab250dda8f314ba218d6a24681c9d3a5ab30e10751b8cfb1dbd

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 66a391629d4445a3e7b05499bdbf95d14e2c309acd8f5ab4088aac0e321ceece
MD5 05e1964728cff8b3e017239d6b91a85d
BLAKE2b-256 386f435275dc5e9c16526b33d080179973eee26bf9bef359a9d80c1196eb8b7a

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c49c2e9a9d2e0a543eab1f13c1b90950fd02072493f11978d7bdb2c1f7b7e08
MD5 c9b98261b2055e8090e38a40ce9c9bdb
BLAKE2b-256 2eabfafcd69dd52de951dd3f56b9824c4217a955cf179f0733a697e44e0af79a

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe1e4c5f7d959fff3357ac23450140606e32192e0b47855cecf5921fed14fd1c
MD5 001f9d273aef193a0999fed3b33a4f76
BLAKE2b-256 51a1ee7057c2cdf0f1d1f2a0664314cbd5d95e8e97a9818c50c1049ccaf74d67

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 78a6c05d667dcb93ffa07b0f3664f94d820f4ea383c70830ef914857ae3f05a1
MD5 6ae6f2775f3f5806747962a29eba72a2
BLAKE2b-256 31234a1b8853166526e7859b56a3661f06bc7811da578a28d75e5204f55d4527

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b8d0a1fa13ee8b7337d7addb7dd3cfff337aea9ab2b0ebbb895e7e9e86fd952
MD5 f67113c62fd2ff56e42a5926c8379bce
BLAKE2b-256 e948261a97ff830d92ac1cebdb3ee44b3e87deb6594b46ff838820c311eafa26

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4c9249a90b513acaf383ab989d17ce4190a95a7dba603f055f45bd28e82e25d
MD5 e9244f23184ea2e49b2958be9cbd4b56
BLAKE2b-256 6d6aabe9d329351dc300d6a767d60ab8b5538d623c9fa938aa2bf775880ad07d

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp37-pypy37_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 40c91bdede97ca907b78bbe97b96a737724d29ca989a40ffc9e362cca34ff7ec
MD5 8e9851e8b4ac8b283a09058042d65a31
BLAKE2b-256 5da2f6f9d45c21411e4d8025a5f6517039941b324685eb998ab1186d5d016fe9

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c2096c51b5f9701af123f53e1557b33cb2d7173d5ae546ff844b5bc2b9c96413
MD5 09dd30fee7c4f320d1fb7b5ce9fa985e
BLAKE2b-256 5360ba60182e6ba3db61930d9fbeae975419de8a65c8bf181c9435a1a458ea11

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98a9557520c5f650724923aa382b10bd972fa8dda475b7f7e7b87e62832295e4
MD5 0bd5860e50ceedcf444333c67fe12d93
BLAKE2b-256 e82eb1ced1706414754740590cac966d1d72c9ca24e6771c258a0a33f534ca2a

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0a606c39dd3539f9207727badd4791d23dc8ad3ca72ded65ef1a1547cc658ccf
MD5 1d234a21c767e741b1f346976de78e20
BLAKE2b-256 2dd1d534ddbac94c2ebf74b2a2e30041d6b66e6f5a8a99e507c1b2f3d91e1c5a

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b761965cc0477146738973b889d7ed7b9cfda5855ee1e0ec7c592b9645945d4
MD5 cdb02ddc43cdabbc805405a94dea75db
BLAKE2b-256 99b51b1f42d006150550578a7aa3305bc23bb1615d887a28d31bf7837384102a

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.4.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for raphtory-0.4.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 196f46e4a8b08d27a830d9e25cb6339d839fb899c4efd1ac650a071f6a065490
MD5 a1f6ff328e59f52cb21e88f076e11608
BLAKE2b-256 cf26653419e2f9d4137c6eebd4421dbff25fabaf870daae200befba15289fcc8

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a11228ab4e93024d55fd9f8626a40b0cce5fe305b0768d5d2edb7e4d19fbcc13
MD5 ca9b12957fb8146953509c07b0087687
BLAKE2b-256 01592c1ca846cf7673ba18e7de7e1213b11cb98ed55a54bbc577a0e08f2bcbbc

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 adcdeb43c6e65faf32a2bbbc6a4a0df039eeb5d0502c5105da914e1e20725e7f
MD5 29affca57402a4d010c33f671b1c5a9c
BLAKE2b-256 8178d76ccf7b1631cbe20e5f4c7f13f4c0805c414c7c7e3414b0fd4c9519298a

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e8994255a1a1a84b7a3068c5cd6dceedb57ac56131619c6853defc855e279c6e
MD5 4a880764634247a648d4a7762631439e
BLAKE2b-256 5faa79a596561b12137513935f9aa1634bb8eca80809cd8b89546724970e3658

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54d4ac1635ffb8d84407df4735ba53ba53e2f3a2f7bb20dca4231848f12be4a4
MD5 34373ce66ba7fbee74caf2359fd30651
BLAKE2b-256 cb7509f0633c4dfdc11940fd93ea6f6d740a8e7ab7945dea9defb3a729380907

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9f299f8639312575a010be1b322dbc4b4db376f5db5f5d16f93c5739c16b64cc
MD5 f782539f334a0a30ad22997bd95425fc
BLAKE2b-256 dedd2358dcf4bfd756dc895bf63bdaa02f8e8d41d75806d20b6699be7e2b19eb

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.4.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for raphtory-0.4.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 b682c5be7adf5d397648c8c9e5fb991767e0fc592d534b1256931b796b468b7f
MD5 fab85c12139e04283386535ee8eaf3ee
BLAKE2b-256 cf9a087b76fa1b8122ab3e4e6364dfbbd62f9b5c3a932bcdfc0afa488edeaf6e

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d18633af3c45d1c2eea4f028d7a365e5498783c5eb7c5773b4676a0f868ab78d
MD5 5c6cf24928927ff45457fa306a20bf16
BLAKE2b-256 15ce259f1c7a6fc97e2a28bba4d25498cb7c017cd643f767d4aaa1d0b7113b6e

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5d726f90d058cf7cfacb5d19977c0e74ce94e74bda9e601bad8480a74a5cb390
MD5 da5dba8624834f97e4ed469b2b38345c
BLAKE2b-256 20220c880fb014f4a7d757245760b04a110ddf9992a0019746e811fbd0de2f03

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b65e0d1bbc8127fc5cf5d53b7eabdbd140a0fe46ac67abc0c89ca66e36b9a8d4
MD5 6a7ead0e43c5f663bce952d25ff40758
BLAKE2b-256 dce6744fabbf2c76f49e240059777e8b144f1619245acc05c90c2001563092c4

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d55886eeebacc3b8830e914a60ab015e3d4e60df810aafe211162f6839f526b5
MD5 dbd1809a7119e74f40606fc4b6a0f2df
BLAKE2b-256 00e6a98a83a91a6c157e4e6b121e4a621aeb4d627966c21d5aa27229f3aac38c

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 706b36405615179abaeeacb3c2f07926bdb18342667f8b87f1780972d39b3890
MD5 62a5929199d8e6fc07570e19586f04ce
BLAKE2b-256 7476c79d4b2128fcf93679de7d86813826ae77bd2bf1f057814de5842c3b70ca

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.4.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for raphtory-0.4.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 40e28b118b1ef9a630fe224fa3cc8eb357082e700f8f7e5eb16404bdb6e6dcdd
MD5 b4325ce8c7d21147e18ebff667fc15ad
BLAKE2b-256 881412208899942156fbe9b17494123f98a9d024873784df257f55006044549c

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd2b4a65010d9fd35488220b70c5d250f5492c893cf835fcfce22559fff7e837
MD5 f5695b8ea7a6c27563d6a468d11e6438
BLAKE2b-256 ae322fa433e2dfdaef577108cf20a84f54413dae1cb05f8011dc2a2a8ad07917

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 39756d3674109b82349393f7355ef3ebea9bec32fbdb98da536f8216477bdde7
MD5 f279e31e30c1cba0ac6735c55a9cea82
BLAKE2b-256 9a4f44e57e0920878880f8616469628b3d638cdbcad6b02704b9a4c544c6136e

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c77ca82ea6beaaaff85c97751dab9d0a59401a0b1012c69624642c8b06096c9
MD5 041f1d33ca8b26ca8fe4baa6ac14cfff
BLAKE2b-256 d17a36dd1e8c6d3843e370f3cfc2ad13755ac2584e4a753b3fa6f46efe01e2f1

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8cc68c2917d5ed7e790c4a1ee1e9074cd2b8901336aeb2ba3eb636afc505198b
MD5 aa996d743150db2d4da02e4b4ed70bc4
BLAKE2b-256 bd5cb0df73064012e651bf50578094bcd64dd587751243134c4374762314525f

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a221dd724bf8574327c3f976908384a83b7194bdd0e775e81c94dccc22331fbb
MD5 7691980741c037c196f71cdc188bba18
BLAKE2b-256 9343e6ba55aab3bde5df1878be482c5596a63a71bfd7fd47656a76d9cdba4b76

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.4.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for raphtory-0.4.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 3d2b307699f545b0502cc8663a3fd48736bcda4e182ac48031db9fe0f0f7d8c0
MD5 8d1328efd783fcd7e8fcc146bc029725
BLAKE2b-256 c85357f0776280c7ea681b4bfb6f01ce8f1181654177d0f6257e951916b6bc09

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f60553e6c04f03d4ac2f497e7c1abc00c2da8c1d49d46c00ed6eda22845fe92f
MD5 9fc15f0b8165034d8c8d7a3b953a2602
BLAKE2b-256 13d915689caea80ddcc785a8742160739edc9795697290d49db55f57d80810f5

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 6ec898fe111d94327d63a9fa976fcd2063b27b56631f744cc8f1de6cded96167
MD5 ec64275e58f2bd082e6dad5e4836abea
BLAKE2b-256 99929359c5db5fc1aedc48bcd9edf110df39db0f28434fe5dd38515c83b4bbf5

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3600f9c4c13112dae6d840abfbd2f59530e9ae785513f8e9afb742da18dffec8
MD5 3a3cdfd4d64c1f376f2696760d3162c8
BLAKE2b-256 f2b0a0bb7b94871df93117508d800dac2c9ef89057286f0eeb3db59e2cfb5ece

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.4.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for raphtory-0.4.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 aa0f34b3f1df10c75f5d5432ed008adeaaece9106daecf7aa082d6ac27bc150c
MD5 08041c6387e38e766610711fcaa33925
BLAKE2b-256 58d58c6cde122b670bb72a2ac4c78032a8823182a9b1ba06df959b5c1e53592e

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf12cead50aa168d8a8d7cab40580be8b8cc91b2c20e5a58978e481c09dad52c
MD5 e6d05ddce5d41c5bba3dbd465d2655df
BLAKE2b-256 6d7ee9d5d315bf5d8d604ba81b879fe9032836b0f6e7edfb88562bb9f77bccc4

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 871232abdfe17540bc71ab17ad609808b02d2eb5e07c5272240c7b95cf2280e7
MD5 75b6288aee1abb6dac61a501f6a1eea8
BLAKE2b-256 2375a8e24260b2118566c53e3da6f7a95c5e4cdaadd029f89332c9a39a2604d5

See more details on using hashes here.

File details

Details for the file raphtory-0.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f41f4084f1731ce813e0ced59852109d7a13bf9c66bfe72421af59bc8555c6fe
MD5 247637f1cc75011f863374b68eccbaba
BLAKE2b-256 a10be1aec6dc4acf7bd189267a682e332a9e5821985ca86ee2f196d3fa289902

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page