Skip to main content

Python package for raphtory, a temporal graph library

Project description


Raphtory

Test and Build Latest Release Issues Crates.io PyPI PyPI Downloads Launch Notebook

🌍 Website   📒 Documentation   Pometry   🧙🏻‍ Tutorial   🐛 Report a Bug   Join Slack


Raphtory is an in-memory vectorised graph database written in Rust with friendly Python APIs on top. It is blazingly fast, scales to hundreds of millions of edges on your laptop, and can be dropped into your existing pipelines with a simple pip install raphtory.

It supports time traveling, full-text search, multilayer modelling, and advanced analytics beyond simple querying like automatic risk detection, dynamic scoring, and temporal motifs.

If you wish to contribute, check out the open list of issues, bounty board or hit us up directly on slack. Successful contributions will be reward with swizzling swag!

Running a basic example

from raphtory import Graph
from raphtory import algorithms as algo
import pandas as pd

# Create a new graph
graph = Graph()

# Add some data to your graph
graph.add_vertex(timestamp=1, id="Alice")
graph.add_vertex(timestamp=1, id="Bob")
graph.add_vertex(timestamp=1, id="Charlie")
graph.add_edge(timestamp=2, src="Bob", dst="Charlie", properties={"weight": 5.0})
graph.add_edge(timestamp=3, src="Alice", dst="Bob", properties={"weight": 10.0})
graph.add_edge(timestamp=3, src="Bob", dst="Charlie", properties={"weight": -15.0})

# Check the number of unique nodes/edges in the graph and earliest/latest time seen.
print(graph)

results = [["earliest_time", "name", "out_degree", "in_degree"]]

# Collect some simple vertex metrics Ran across the history of your graph with a rolling window
for graph_view in graph.rolling(window=1):
    for v in graph_view.vertices:
        results.append(
            [graph_view.earliest_time, v.name, v.out_degree(), v.in_degree()]
        )

# Print the results
print(pd.DataFrame(results[1:], columns=results[0]))

# Grab an edge, explore the history of its 'weight'
cb_edge = graph.edge("Bob", "Charlie")
weight_history = cb_edge.properties.temporal.get("weight").items()
print(
    "The edge between Bob and Charlie has the following weight history:", weight_history
)

# Compare this weight between time 2 and time 3
weight_change = cb_edge.at(2)["weight"] - cb_edge.at(3)["weight"]
print(
    "The weight of the edge between Bob and Charlie has changed by",
    weight_change,
    "pts",
)

# Run pagerank and ask for the top ranked node
top_node = algo.pagerank(graph).top_k(1)
print(
    "The most important node in the graph is",
    top_node[0][0],
    "with a score of",
    top_node[0][1],
)
Graph(number_of_edges=2, number_of_vertices=3, earliest_time=1, latest_time=3)

|   | earliest_time | name    | out_degree | in_degree |
|---|---------------|---------|------------|-----------|
| 0 | 1             | Alice   | 0          | 0         |
| 1 | 1             | Bob     | 0          | 0         |
| 2 | 1             | Charlie | 0          | 0         |
| 3 | 2             | Bob     | 1          | 0         |
| 4 | 2             | Charlie | 0          | 1         |
| 5 | 3             | Alice   | 1          | 0         |
| 6 | 3             | Bob     | 1          | 1         |
| 7 | 3             | Charlie | 0          | 1         |

The edge between Bob and Charlie has the following weight history: [(2, 5.0), (3, -15.0)]

The weight of the edge between Bob and Charlie has changed by 20.0 pts

The top node in the graph is Charlie with a score of 0.4744116163405977

GraphQL

Create/Load a graph

Save a raphtory graph and set the GRAPH_DIRECTORY environment variable to point to the directory containing the graph.

Alternatively you can run the code below to generate a graph.
mkdir -p /tmp/graphs
mkdir -p examples/rust/src/bin/lotr/data/
tail -n +2 resource/lotr.csv > examples/rust/src/bin/lotr/data/lotr.csv

cd examples/rust && cargo run --bin lotr -r

cp examples/rust/src/bin/lotr/data/graphdb.bincode /tmp/graphs/lotr.bincode

Run the GraphQL server

The code below will run GraphQL with a UI at localhost:1736

GraphlQL will look for graph files in /tmp/graphs or in the path set in the GRAPH_DIRECTORY Environment variable.

cd raphtory-graphql && cargo run -r 
ℹ️Warning: Server must have the same version + environment The GraphQL server must be running in the same environment (i.e. debug or release) and same Raphtory version as the generated graph, otherwise it will throw errors due to incompatible graph metadata across versions.
Following will be output upon a successful launch
warning: `raphtory` (lib) generated 17 warnings (run `cargo fix --lib -p raphtory` to apply 13 suggestions)
    Finished release [optimized] target(s) in 0.91s
     Running `Raphtory/target/release/raphtory-graphql`
loading graph from /tmp/graphs/lotr.bincode
Playground: http://localhost:1736
  2023-08-11T14:36:52.444203Z  INFO poem::server: listening, addr: socket://0.0.0.0:1736
    at /Users/pometry/.cargo/registry/src/github.com-1ecc6299db9ec823/poem-1.3.56/src/server.rs:109

  2023-08-11T14:36:52.444257Z  INFO poem::server: server started
    at /Users/pometry/.cargo/registry/src/github.com-1ecc6299db9ec823/poem-1.3.56/src/server.rs:111

Execute a query

Go to the Playground at http://localhost:1736 and execute the following commands:

Query:

    query GetNodes($graphName: String!) {
        graph(name: $graphName) {
            nodes {
              name
            }
      }
    }

Query Variables:

{
  "graphName": "lotr.bincode"
}

Expected Result:

{
  "data": {
    "graph": {
      "nodes": [
        {
          "name": "Gandalf"
        },
        {
          "name": "Elrond"
        },
        {
          "name": "Frodo"
        },
        {
          "name": "Bilbo"
        },
        ...

Installing Raphtory

Raphtory is available for Python and Rust as of version 0.3.0. You should have Python version 3.10 or higher and it's a good idea to use conda, virtualenv, or pyenv.

pip install raphtory

Examples and Notebooks

Check out Raphtory in action with our interactive Jupyter Notebook! Just click the badge below to launch a Raphtory sandbox online, no installation needed.

Binder

Want to give Raphtory a go on your laptop? You can checkout out the latest documentation and complete list of available algorithms or hop on our notebook based tutorials below!

Getting started

Type Description
Tutorial Building your first graph

Developing an end-to-end application

Type Description
Notebook Use our powerful time APIs to find pump and dump scams in popular NFTs

Benchmarks

We host a page which triggers and saves the result of two benchmarks upon every push to the master branch.

View this here https://pometry.github.io/Raphtory/dev/bench/

Bounty board

Raphtory is currently offering rewards for contributions, such as new features or algorithms. Contributors will receive swag and prizes!

To get started, check out our list of desired algorithms at https://github.com/Raphtory/Raphtory/discussions/categories/bounty-board which include some low hanging fruit (🍇) that are easy to implement.

Community

Join the growing community of open-source enthusiasts using Raphtory to power their graph analysis projects!

  • Follow Slack for the latest Raphtory news and development

  • Join our Slack to chat with us and get answers to your questions!

Contributors

Want to get involved? Please join the Raphtory Slack group and speak with us on how you could pitch in!

License

Raphtory is licensed under the terms of the GNU General Public License v3.0 (check out our LICENSE file).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

raphtory-0.6.0-cp311-none-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.11Windows x86-64

raphtory-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

raphtory-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

raphtory-0.6.0-cp311-cp311-macosx_11_0_arm64.whl (9.8 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

raphtory-0.6.0-cp311-cp311-macosx_10_7_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.11macOS 10.7+ x86-64

raphtory-0.6.0-cp310-none-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.10Windows x86-64

raphtory-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

raphtory-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

raphtory-0.6.0-cp310-cp310-macosx_11_0_arm64.whl (9.8 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

raphtory-0.6.0-cp310-cp310-macosx_10_7_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.10macOS 10.7+ x86-64

raphtory-0.6.0-cp39-none-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.9Windows x86-64

raphtory-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

raphtory-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

raphtory-0.6.0-cp39-cp39-macosx_11_0_arm64.whl (9.8 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

raphtory-0.6.0-cp39-cp39-macosx_10_7_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.9macOS 10.7+ x86-64

raphtory-0.6.0-cp38-none-win_amd64.whl (8.5 MB view details)

Uploaded CPython 3.8Windows x86-64

raphtory-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

raphtory-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

raphtory-0.6.0-cp38-cp38-macosx_11_0_arm64.whl (9.8 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

raphtory-0.6.0-cp38-cp38-macosx_10_7_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.8macOS 10.7+ x86-64

raphtory-0.6.0-cp37-none-win_amd64.whl (8.5 MB view details)

Uploaded CPython 3.7Windows x86-64

raphtory-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

raphtory-0.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

File details

Details for the file raphtory-0.6.0-cp311-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.6.0-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for raphtory-0.6.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 14791b958ca9df71a684dbe95c856a2d27149da251d28423c3d40182f3be840d
MD5 231b6b8c819d2fd891126140bf3fbcbd
BLAKE2b-256 259547b6a9afd2e1de3a4de51f8f7f65569000163a02c2364462edbf663a2638

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2f136b1d75fe84f2077678058acc01da4474a7e989fe052d01c63a0f3109fd7
MD5 5f9ebb0d98848fb1325af25928dcdf37
BLAKE2b-256 f5830a5ca36001b92abcab288515daf58c2de735b52700b70724cdf5ebff26ef

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cf75703196380b1dbe23b32649a84e1a8718405ae7d6ff52ba023a65db87565a
MD5 3c62233a4675a329603153cc16af100a
BLAKE2b-256 887dab958232192eac36b2aa1989730502b74f44b96867f82414193c1f0438ca

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bfc3ee9d4d4640441a023b0daee81b0c3807b8d44005685ba9e41ee2357fb30
MD5 fce2ca558257bcfc4e3ee5a1d6cc0e76
BLAKE2b-256 91d8781735d76bd6dbc959ca340fa1da7d1ff76e7d7e080c79754e1bdad58b12

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 673a45baa61fbbaac723a4c7fe1fd04025bb591dd5040bafd87d2bad3a65c2e4
MD5 b5feb7a5f31b7ecb9495d44f037569e4
BLAKE2b-256 b1b30c6e4ff9d7f222cf64d86407b50cf7bd99f2bc71d0c86b7a36544a1a43f5

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.6.0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for raphtory-0.6.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 3372381ee93d9e0111393ca7e14fb57f7a7c879e50728366f5223942bb565990
MD5 29b30cdce473083d69214aa32d0f1077
BLAKE2b-256 f973236fd878bfa73ccc9aeec45d9a1b59226727e3695662a28a54451f3d01db

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f5a381ef9401e28719b30a4d751f0a32df31e5c88581e01681c15a60aff6a25
MD5 7d862b39015b23d4215b715f6f6be3cc
BLAKE2b-256 0941bd8f1e6e9d3e9c25311baad615ac65ed28353ddde7d22919f9962f4a6df8

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a53ca0f2f7c2e9e1d68c48ddf695302b788843f20cecc5955c642ab2f9b10c3f
MD5 7e32d0c0b2aeb8c0f32a4d22f0ff1878
BLAKE2b-256 f80794e835247a029958033f1dabbcbb10cab1ab04086fa8e13ac604cea6cb12

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 164a5bff3338651b09bb73c2c12c1af8fb23d20551cf529fd1f7f930829118a0
MD5 e79d64fcf3c8c5bcec8da4ac610c44bf
BLAKE2b-256 2ccf3ab8ee4e589226fccb6d6dfa123c6a6487fc98c66d8527f76202e641e647

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e33d9b73fe277be116698ea8b6ad1b06426a5b392ff55d822e18709df3e9844b
MD5 87003d96732ea2bfdc918aedd150299f
BLAKE2b-256 f94b0303213f8381bc6f5118728d0675c6fdc34c47df44095cc798895d364753

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.6.0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for raphtory-0.6.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 4e09a3c29b6c98641f50cacf2c0f2aa2caa4d19c424f61fa0988a45ea738345b
MD5 bffc934e0ccbe990e106c9532d57fe11
BLAKE2b-256 5457797caf3000991e8c469acff45e68dbd78a8f937d358a5bf92520040d8076

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f1f9a453ad4994fe0588e69fd510e3af5322387af1e10d0e5009e0f5b0c2914
MD5 17691ec77bfd0ec81595c04d675343b8
BLAKE2b-256 d776043520de19326097bf0d2535b2cbf483fd6323122ac9e1f72449e62f0bb5

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 984ab3afbe3a502f4c09e05116cabde413d84c5709ba4c5face6abdd00e67244
MD5 ed66f38810588c2c0acc90ce6af0eb61
BLAKE2b-256 e4f303d86b32821c17c48512488cce6cad70f2165d0f995cb3a9d562e6b50260

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3733e6d799bc82fd1721a43f10fa5308b5572405b1d0de4e1b6443dfdc7e1a02
MD5 e67ce5ad56e2f829ecf370e77c6e93e4
BLAKE2b-256 7e9353d6c59f2c5b34174f859334b2f4fbd19a8a3187a8037115c244f343ab4b

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 21ba7b810d32432cd31ad76c2a7d354a2997b912967fbc8f850f00f58abd8217
MD5 d159f4deaa1d605a755c37c64b99be1d
BLAKE2b-256 fa56881bbe26892de62a8cd8c8618f23fe814edfcbc95b1baf9f30ab9c90844c

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.6.0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for raphtory-0.6.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 c4678e420fd461f38943ff8fdd62ad6388503ca0baad1c0630f6ebb4d610987b
MD5 67f4674304bdb587b90917133e5fd5eb
BLAKE2b-256 aee7205c839933687b9be406a94e883ca0a3e40f64d828b95a1ba6e7b7412efe

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76052dd23fc71b09addd0519f24d711049c921fb8730f41e194d37c92023432a
MD5 5c1dd44cdd588bb91775eb91698918f6
BLAKE2b-256 3dc70b0b1f7dce0a150d8d3b197b2864bac49d968cd801237e8ea51db56bd4fe

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 19f7626ca266e3425e6c64c084d99d4b23b05cb650041138b0ce5077467d7945
MD5 896db8657eb402b152c60a3669ff91cc
BLAKE2b-256 772342b1868294d480f5b900791b460d7e35a0e2e80d26cabfd3353b0264b298

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8cfc37f229adfa0fe0c05d9e3f93752efd2d027ad706585aa498c893018d29ee
MD5 82fd121c1820549eed8233103a16eae9
BLAKE2b-256 5fc4686f57818c50999fbf3ce3d9de7b76bbb829c042c847f9b7162fced4fa96

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d9a5772d324d8f7101ea8831feb0c1225f4c70af49396fc1e716f6b138827749
MD5 b9c1311a09eaa96ac91a3cf8af316519
BLAKE2b-256 9c8b9b02897be26d7b082fc3873d9c9b7d4bba33d445b3d1c1a4d572d1ffffcd

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: raphtory-0.6.0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for raphtory-0.6.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 3dc243229eb615996cbd71f84b707339b1ad50d283ac9958d5e90714788527b8
MD5 ffc0ce99a33e3046a2d60406ff00cd84
BLAKE2b-256 6063149b5a6b789cd37a2c3e170ee7f5677f15c21ac9c24533f52f096a9f25a2

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 889ce64b46cbd58f7aff58187d655dce63a2f823e750db03964974da75f2230d
MD5 c4c4eb7c6052917db31905587c44bc87
BLAKE2b-256 00a69fecacb3c2997400bab22b5aa735b67ccd8b2efaca9469fa8ba395f81c07

See more details on using hashes here.

File details

Details for the file raphtory-0.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for raphtory-0.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ad34e08498a817e8da8d386ba580615fd3cd6170fdfc7adbddd5c5d0c1cbcfd
MD5 066902f7bb459eae057efe1b199cf6e2
BLAKE2b-256 f787906e9de959ee074c254009f4ad5d93f1aca5cd405bee398ad724727470c4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page