Skip to main content

Tool of converting images of equations into LaTeX code.

Project description

rapid_latex_ocr

PyPI SemVer2.0

  • rapid_latex_ocr is a tool to convert formula images to latex format.
  • The reasoning code in the repo is modified from LaTeX-OCR, the model has all been converted to ONNX format, and the reasoning code has been simplified, Inference is faster and easier to deploy.
  • The repo only has codes based on ONNXRuntime or OpenVINO inference in onnx format, and does not contain training model codes. If you want to train your own model, please move to LaTeX-OCR.
  • If it helps you, please give a little star ⭐ or sponsor a cup of coffee (click the link in Sponsor at the top of the page)
  • Welcome all friends to actively contribute to make this tool better.

Installation

  1. pip install rapid_latext_ocr library. Because packaging the model into the whl package exceeds the pypi limit (100M), the model needs to be downloaded separately.

    pip install rapid_latex_ocr
    
  2. Download the model (Google Drive | Baidu NetDisk), when initializing, just specify the model path, see the next part for details.

    model name size
    image_resizer.onnx 37.1M
    encoder.onnx 84.8M
    decoder.onnx 48.5M

Usage

  • Used by python script:
    from rapid_latex_ocr import LatexOCR
    
    image_resizer_path = 'models/image_resizer.onnx'
    encoder_path = 'models/encoder.onnx'
    decoder_path = 'models/decoder.onnx'
    tokenizer_json = 'models/tokenizer.json'
    model = LatexOCR(image_resizer_path=image_resizer_path,
                    encoder_path=encoder_path,
                    decoder_path=decoder_path,
                    tokenizer_json=tokenizer_json)
    
    img_path = "tests/test_files/6.png"
    with open(img_path, "rb") as f:
        data = f. read()
    
    result, elapse = model(data)
    
    print(result)
    # {\frac{x^{2}}{a^{2}}}-{\frac{y^{2}}{b^{2}}}=1
    
    print(elapse)
    # 0.4131628000000003
    
  • Used by command line.
    $ rapid_latex_ocr -h
    usage: rapid_latex_ocr [-h] [-img_resizer IMAGE_RESIZER_PATH]
                        [-encdoer ENCODER_PATH] [-decoder DECODER_PATH]
                        [-tokenizer TOKENIZER_JSON]
                        img_path
    
    positional arguments:
    img_path Only img path of the formula.
    
    optional arguments:
    -h, --help show this help message and exit
    -img_resizer IMAGE_RESIZER_PATH, --image_resizer_path IMAGE_RESIZER_PATH
    -encdoer ENCODER_PATH, --encoder_path ENCODER_PATH
    -decoder DECODER_PATH, --decoder_path DECODER_PATH
    -tokenizer TOKENIZER_JSON, --tokenizer_json TOKENIZER_JSON
    
    $ rapid_latex_ocr tests/test_files/6.png \
        -img_resizer models/image_resizer.onnx \
        -encoder models/encoder.onnx \
        -dedocer models/decoder.onnx \
        -tokenizer models/tokenizer.json
    # ('{\\frac{x^{2}}{a^{2}}}-{\\frac{y^{2}}{b^{2}}}=1', 0.47902780000000034)
    

See details for RapidLatexOCR

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

rapid_latex_ocr-0.0.4-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file rapid_latex_ocr-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for rapid_latex_ocr-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 7eda755d084018f3bba7b11ad6dd14a318a3c3be389e0cf67c5bffd433e9a249
MD5 385e5375901d5732004579fb77ed5796
BLAKE2b-256 27f915da72cfecc67bd26244fe3bb782320087cc659f82c48c5264d7b5a105c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page