Skip to main content

Rapidae: Python Library for Rapid Creation and Experimentation of Autoencoders

Project description

Rapidae: Python Library for Rapid Creation and Experimentation of Autoencoders

Documentation Status License made-with-python

🔗 Documentation | 🔗 PyPI Package

Description 💻

Rapidae is a Python library specialized in simplifying the creation and experimentation of autoencoder models. With a focus on ease of use, Rapidae allows users to explore and develop autoencoder models in an efficient and straightforward manner.

Main features 💪

  • Ease of Use: Rapidae has been designed to make the process of creating and experimenting with autoencoders as simple as possible, users can create and train autoencoder models with just a few lines of code.

  • Backend versatility: Rapidae was develovep using the new version Keras 3.0. This adds the ability to run experiments on three different backends (Tensorflow, Pytorch and Jax) allows users to take advantage of the specific strengths of each without having to learn new syntaxes. Rapidae handles the abstraction, allowing researchers to focus on the design and evaluation of their models.

  • Customization: Easily customize model architecture, loss functions, and training parameters to suit your specific use case.

  • Experimentation: Conduct experiments with different hyperparameters and configurations to optimize the performance of your autoencoder models.

Overview 📦

Rapidae is structured as follows:

  • data: This module contains everything related to the acquisition and preprocessing of data sets. It also includes a tool utils for various tasks: latent space visualization, evaluation, etc.

  • metrics: Its main functionality is the creation of new custom metrics. From an abstract class on which to inherit and create new metrics.

  • models: This is the core module of the library. It includes the base architectures on which new ones can be created, several predefined architectures and a list of predefined default encoders and decoders,

  • pipelines: Pipelines are designed to perform a specific task such as data preprocessing or model training.

Installation ⚙️

With Package manager Pip

The easiest way is to use the pip command so that it's installed together with all its dependencies.

  pip install rapidae

From source code

You can also download this repository and then create a virtual environment to install the dependencies in. We recommend this option if you plan to contribute to Conmo.

git clone https://github.com/NahuelCostaCortez/rapidae
cd rapidae

Then you only have to install the requirements in a new Python virtual environment using:

pip install -r requirements.txt

Documentation 📚

Check out the full documentation for detailed information on installation, usage, examples and recipes: 🔗 Documentation Link

All documentation source and configuration files are located inside the docs directory.

Dealing with issues 🛠️

If you are experiencing any issues while running the code or request new features/models to be implemented please open an issue on github.

License ✒️

This project is licensed under the Apache 2.0 license. See LICENSE file for further details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidae-0.0.1.tar.gz (650.1 kB view details)

Uploaded Source

Built Distribution

rapidae-0.0.1-py3-none-any.whl (33.3 kB view details)

Uploaded Python 3

File details

Details for the file rapidae-0.0.1.tar.gz.

File metadata

  • Download URL: rapidae-0.0.1.tar.gz
  • Upload date:
  • Size: 650.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for rapidae-0.0.1.tar.gz
Algorithm Hash digest
SHA256 bda238227ef5bad1327c2d69b52d778bf905223b381a624dbfa06b180d2a22e0
MD5 dfaec288fa8872858144331ba5b8bba5
BLAKE2b-256 73f596ce49f279a4d7de574d2d2e040e4f7ac9c2a3c0cec876dc9cc022e9422b

See more details on using hashes here.

File details

Details for the file rapidae-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: rapidae-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 33.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for rapidae-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 32587aee84a5077391b601a26224c3f218207b85c0a3fcb0a3dce324f0d5fc2f
MD5 25cf560f1f8afc586aa5d313ece68d63
BLAKE2b-256 aea511795a6ad1c8d37b952bb6d3366293206193ee870efb02500383880cf5b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page