Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0
# Returns 100.0 if one string is a subset of the other, regardless of extra content in the longer string
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear")
100.0
# Score is reduced only when there is explicit disagreement in the two strings
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear but not a cat")
92.3076923076923

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.9.5.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.9.5-pp310-pypy310_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.5-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.5-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

rapidfuzz-3.9.5-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.5-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.5-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

rapidfuzz-3.9.5-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.5-pp38-pypy38_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.9.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.5-cp312-cp312-win_arm64.whl (850.0 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.9.5-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.9.5-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_aarch64.whl (2.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.5-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.9.5-cp312-cp312-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.9.5-cp311-cp311-win_arm64.whl (855.2 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.9.5-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.9.5-cp311-cp311-win32.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.5-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.9.5-cp311-cp311-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.9.5-cp310-cp310-win_arm64.whl (854.0 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.9.5-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.9.5-cp310-cp310-win32.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.5-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.9.5-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.9.5-cp39-cp39-win_arm64.whl (856.0 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.9.5-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.9.5-cp39-cp39-win32.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.5-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.9.5-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.9.5-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.9.5-cp38-cp38-win32.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_s390x.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_ppc64le.whl (2.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_i686.whl (7.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_aarch64.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.5-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.9.5-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.9.5.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.9.5.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.5.tar.gz
Algorithm Hash digest
SHA256 257f2406a671371bafd99a2a2c57f991783446bc2176b93a83d1d833e35d36df
MD5 2c46c9739ea861569c36150c01ccfc99
BLAKE2b-256 0e91df26e7cb807fc409207687a6995d0b1a3bffde4b1e84156389c1c3938647

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9cf2028edb9ccd21d1d5aaacef2fe3e14bee4343df1c2c0f7373ef6e81013bef
MD5 64d3877f92a8d2989a836249a664fa8c
BLAKE2b-256 d51f647cb48d599049e25e573ef050496bd43daab743756721ac1dc5c6be9824

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 976ed1105a76935b6a4d2bbc7d577be1b97b43997bcec2f29a0ab48ff6f5d6b1
MD5 eb3be34d18115cf52853f3fff0eff8fb
BLAKE2b-256 6a624a0fd6e4806f9741ad63dab0b16ff935522383027bd38c87a73f946f94b7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bfb47513a17c935f6ee606dcae0ea9d20a3fb0fe9ca597758472ea08be62dc54
MD5 8f084afe69400813d07b567aea6712a5
BLAKE2b-256 ddefbd01e1d293e13ba7a740776995caf63b353cb409003ca472d37709d8b21a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e2c0c8bbe4f4525009e3ad9b94a39cdff5d6378233e754d0b13c29cdfaa75fc
MD5 f1d41d104b87d19c2e56ae7719cacd8f
BLAKE2b-256 ebfd58cba2c8f66e5336a81f27437b0cb6f045b20a8efe8e6c9e12214272a6ad

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e46cd486289d1d8e3dab779c725f5dde77b286185d32e7b874bfc3d161e3a927
MD5 69e5a93e61a9d6ada41626a22dfdbb22
BLAKE2b-256 4bd982b8a82a2347c1e634ad8bb81534e0f07e08afd1bca482768eec85929d79

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f4e0122603af2119579e9f94e172c6e460860fdcdb713164332c1951c13df999
MD5 b360d8f1f18eca2914cc2ea595d83146
BLAKE2b-256 2e485dacfbf20591b4db5afd996f47e9551c1c8c49bb60c4414cebed71a68459

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 abb1ac683671000bd4ec215a494aba687d75a198db72188408154a19ea313ff4
MD5 df423c6944133b52007daac715c878f4
BLAKE2b-256 1e4dd44a454acc67dff26e19eaaed81d8fb9a61990c69e9afc6a459da91dbbd5

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adee55488490375c1604b878fbc1eb1a51fe5e6f5bd05047df2f8c6505a48728
MD5 c9146a90330bb7139c80919c63eb19a0
BLAKE2b-256 d7c223955305a79030731881a55c746f049a1f92689ad7a465a48381a13f1ea8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 876e663b11d9067e1096ea76a2de87227c7b513aff2b60667b20417da74183e4
MD5 387b16a4db1779a6078bc5ebb25503a6
BLAKE2b-256 07e550e845ac35c6d41c09850fcaf221d911ca680310f93f9323b911bf3e85d1

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42c4d1ba2647c8d2a82313c4dde332de750c936b94f016308339e762c2e5e53d
MD5 8c4713a9a4d4d2d23f68ae9aebb4ffeb
BLAKE2b-256 3753719a332c3e66d7db65e8e92c962826e958792f91d7d5d2604822b91e7154

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3e037b9ec621dec0157d81566e7d47a91405e379335cf8f4ed3c20d61db91d8
MD5 3195925121ee1a047f4a7437d17001a7
BLAKE2b-256 14fe129eae6568313fbcdbfd36492b27b05e3659ca1f9e6b5fcc33d5661ad8a9

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2b17ecc17322b659962234799e90054e420911b8ca510a7869c2f4419f9f3ecb
MD5 cc8d1775dd1fbe77cbc4c906d03d5030
BLAKE2b-256 dc80a47eabf5c53a02aebae28d410647d004eb2eca2f627e18782badc5fd40d2

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d26f7299e2872d18fb7df1bc043e53aa94fc5a4a2a6a9537ad8707579fcb1668
MD5 7c80ad0d92960d76a08b971ff1e8dc11
BLAKE2b-256 f2832433866955b09381f3b4922ed1da43de0cc08c627f7778d6b84ae56f7e7c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7252666b85c931d51a59d5308bb6827a67434917ef510747d3ce7e88ec17e7f2
MD5 4acac95bd1c630e403296d0969fd7178
BLAKE2b-256 5bf1893a497da5db677e3e13bcc931285edbf485358ec11278bb389b7dc7ab19

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f9f33d05db5bba1d076446c51347a6d93ff24d8f9d01b0b8b15ca8ec8b1ef382
MD5 b15d383a041ad7d26ebbe3a4af17fe47
BLAKE2b-256 c9db81faef1204ce2abefeca426567fcf6bbcb924049ffd8703552763f3c7f5c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7508ef727ef4891141dd3ac7a39a2327384ece070521ac9c58f06c27d57c72d5
MD5 04e398385a277b6f3f2ca8923374f802
BLAKE2b-256 550ad15299b7153adf306d0abe7665887114f36ae408ff5e02a8c80a15f951a4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99eaa8dd8a44664813e0bef014775993ef75a134a863bc54cd855a60622203fd
MD5 af847c008930dd6d66b70fde6cbb1699
BLAKE2b-256 8f51ccf234e7d32805401b097b66d8f3ef8defc98366a1e324d9040f4f856ffc

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 926701c8e61319ee2e4888619143f58ddcc0e3e886668269b8e053f2d68c1e92
MD5 25d9bb7219ad210aff628d5822109afc
BLAKE2b-256 d8ca585a9cc0722bcf3b1d46faec87322b6ae5a880d88e3e0e05d5dce019c62d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 491d3d425b5fe3f61f3b9a70abfd498ce9139d94956db7a8551e537e017c0e57
MD5 bdcffc41cb05d4338dba930e58defe4b
BLAKE2b-256 089263c24db77bf37e7ea25237c988bbdb536c465c4d5c16578eded44c312ec0

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0d9fdb74df87018dd4146f3d00df9fca2c27f060936a9e8d3015e7bfb9cb69e4
MD5 14d89d36f3ac8d6a5e19c6e81116bbc8
BLAKE2b-256 775c0da5bcc1b0fbb4d6c294a7e72731f64d7286e9899d7f989b053731e44953

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.5-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e3c4be3057472c79ba6f4eab35daa9f12908cb697c472d05fbbd47949a87aec6
MD5 a811330347ab4e8c97acb9ae5e8e2ee9
BLAKE2b-256 a9e2f83dd41d79ad7f7de19ae5c0229e9e6ea87286d1d83a314d67ce5281a8e3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0e09abc0d397019bba61c8e6dfe2ec863d4dfb1762f51c9197ce0af5d5fd9adb
MD5 332a35f913778556b4f35fd0f190eb2f
BLAKE2b-256 604ef7a5d4837d5e9a3e8ae0028d8b78f9810e417174b788759ae84b0f9447f6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 7d5a34b8388ae99bdbd5a3646f45ac318f4c870105bdbe42a2f4c85e5b347761
MD5 df7d3b581cd9c163fb828e342235331e
BLAKE2b-256 044df4a99bde5c3bfac519f6733aa0ac29fc5ff63c4f5f623e53eb501a59bcbd

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 e1b024d9d69bb83e125adee4162991f2764f16acc3fb1ed0f0fc1ad5aeb7e394
MD5 78764f226582f0a2dffa8540e83493e1
BLAKE2b-256 c08de1037f4a7824f9a52e50f9eb3d5d58db80ba33b75d2aa0f8272b5cc5a24f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 fe5a11eefd0ae90d32d9ff706a894498b4efb4b0c263ad9d1e6401050863504d
MD5 a986d3331f68f6b6e55b8e75f601d61a
BLAKE2b-256 6d27614b3bb1098b33b175710f320b368f7c0609f67030f1c1a1af47d39110f3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 191d1057cca56641f7b919fe712cb7e48cd226342e097a78136127f8bde32caa
MD5 d87082447b1d738c45a5d0ba3f3f58d8
BLAKE2b-256 6a7b04cf40f3f0df9365dc6458deab47bf94bad90ec5dd60e1e6213ab8ddb5b7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8419c18bbbd67058ca1312f35acda2e4e4592650f105cfd166569a2ebccd01f1
MD5 2c70a81bcac32e189e19a66c1a20420c
BLAKE2b-256 9f77798e098023b00bf21e91bd0b1bc4302f5ba588a1468878640e1be015fc6b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 181073256faec68e6b8ab3329a36cfa1360f7906aa70d9aee4a39cb70889f73f
MD5 58862fe06596b42014b1e11e98897665
BLAKE2b-256 b33e5a78be1184de04bde31d73444bb494023cf32d7ba881292e0ca0d9b2688d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 63e34fb3586431589a5e1cd7fc61c6f057576c6c6804c1c673bac3de0516dee7
MD5 f99b973960976b4794dec74dc95f1a14
BLAKE2b-256 74ce00e56691ef411bc65b95a672bc9afc80893fcae90aaeb42fcbb875fd89e9

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cadd66e6ef9901909dc1b11db91048f1bf4613ba7d773386f922e28b1e1df4da
MD5 84fcbffdfaf4f7b858cf5a410e81f25a
BLAKE2b-256 7e4834ddf17dc959ae3b590fbc7fc0d3f4a76fbf4cb6eb9dc92acff9058c422c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6ceea632b0eb97dac54411c29feb190054e91fd0571f585b56e4a9159c55ab0
MD5 d26d9eb459a4a5c4f69ca41bb8dc0806
BLAKE2b-256 5da85d1534552c5b06a20c7fbc25770003e2ec749a7046ab956da621c1405e49

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9dc39435476fb3b3b3c24ab2c08c726056b2b487aa7ee450aee698b808c808ac
MD5 f509821111cf2b97b0360fde6a1a5209
BLAKE2b-256 136246594133c39d4f370c93ca11c694fb3effdd6496a965330fbc8faf37c1cd

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9729852038fb2de096e249899f8a9bee90fb1f92e10b6ccc539d5bb798c703bc
MD5 6ee7958807d9732c5809644e9da866b4
BLAKE2b-256 13c50e2ac02a90c6d2b2cf97a5ace12368a795198d65ea48c7076e69a176b48c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 599714790dfac0a23a473134e6677d0a103690a4e21ba189cfc826e322cdc8d5
MD5 ffdceeec4099d4279d90e9af12da711e
BLAKE2b-256 9847596ab4ff1070d93700f1db367523ee9f6fa326f9c0f010f82e7a959bec28

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bf9ed6988da6a2c1f8df367cb5d6be26a3d8543646c8eba79741ac9e764fbc59
MD5 9eb32ff89820387501d27d715f5edde8
BLAKE2b-256 465338c717a553cf3f30bc02f4f0ab8ef7b16c40afd619263c98ed1fe067167f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f080d6709f51a8335e73826b96af9b4e3657631eca6c69e1ac501868dcc84b7f
MD5 48207e12dfd0798a7dcb97f0a3fc05db
BLAKE2b-256 ea10552ca203d7e196fff36045edf8cf95630927b3887246a8959d6c72f5470d

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a6f1df5b0e602e94199cccb5e241bbc2319644003e34f077741ebf48aea7ed1a
MD5 0f5e5b4bf97a86b4562535eb056e20cb
BLAKE2b-256 83af765f6e8af055da7639a4c6950b42c3649de0c914aa0dc7cba17b498f3e46

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 bfd3b66ee1f0ebb40c672a7a7e5bda00fb763fa9bca082058084175151f8e685
MD5 1974bb20bc23bcab5c858738f760fbb6
BLAKE2b-256 8fc5dccee5409452f6c8a1ab6a70445ee28f8490c39197e96c9305be0ecadb77

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 24345826b50aafcea26e2e4be5c103d96fe9d7fc549ac9190641300290958f3b
MD5 254b682684804aab8d9cfb806d16fb9a
BLAKE2b-256 08081bea6cc8a3aa56477a630bc0dbf86a5a8683dff6d4291e383ddad1857216

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f6dbe1df0b9334e3cf07445d810c81734ae23d137b5efc69e1d676ff55691351
MD5 729030caad1556522337f263428da5e0
BLAKE2b-256 8175ff12c37bb9dbd92ee44fa040a29f29a489bd5cb1be403fc1b9ec72ab0ed9

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 031806eb035a6f09f4ff23b9d971d50b30b5e93aa3ee620c920bee1dc32827e7
MD5 471bff257951b37dfe808bb5de855b27
BLAKE2b-256 db7eceee25cfa497a1c7039900c9b2c2e35e799b9dde9866ba7376e98cb027e3

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53fb2f32f14c921d2f673c5b7cd58d4cc626c574a28c0791f283880d8e57022c
MD5 84a514ceea61827ed87c1afd752bb240
BLAKE2b-256 237a278d499da3121402b26a9b2e19964512452c5eaef2c248099007c9262d82

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9e36c4640a789b8c922b69a548968939d1c0433fa7aac83cb08e1334d4e5d7de
MD5 80ff6852a1d61079d3f5a0f91af2f99a
BLAKE2b-256 81b878d88b2fd3690b44dd11cdfc78aa5ec296769cbb10e115899f751cf6df50

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9811a741aa1350ad36689d675ded8b34e423e68b396bd30bff751a9c582f586e
MD5 1904bf3d9a64e90b183a1217d4425094
BLAKE2b-256 dcd5b3c575fb05983066192df5e41b1a667ae6f62751dbfea1defde7583746b9

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 529e2cf441746bd492f6c36a38bf9fa6a418df95b9c003f8e92a55d8a979bd9c
MD5 5ad4f1f13368d5be0710c2bebc979fed
BLAKE2b-256 7d633bd5617d95a2a753600ac122fdf0d43c65e62f031b02545870ed1703aac6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f06f163a0341bad162e972590b73e17f9cea2ed8ee27b193875ccbc3dd6eca2f
MD5 cf7d7cb663a13207e68691d487e5055d
BLAKE2b-256 d930b4bc61da69e0f4bace00131cced2860c11868eda45f5900470c458af9b86

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7452d079800cf70a7314f73044f03cbcbd90a651d9dec39443d2a8a2b63ab53
MD5 5d6f615b7eab2a7e298a2ddb18575b28
BLAKE2b-256 8123d38de0952a45bfaf1cefecd756e6c25053aeb5dd100ed76cafd915ca2c36

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c741972d64031535cfd76d89cf47259e590e822353be57ec2f5d56758c98296
MD5 c4f734f0dba0e6b0bfaa982c88dee660
BLAKE2b-256 dbc71d2c51cf70954430321cf667b75572e4027008f4e970f0cb2c38ff905424

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 5dc19c8222475e4f7f528b94d2fa28e7979355c5cf7c6e73902d2abb2be96522
MD5 ed8a417c62ce6b7899320b39a18f4d70
BLAKE2b-256 bd0159aad61418c551d14c0fcf09c1a0f180b30c13bb579b924864a8ea6b7e41

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 345011cfcafaa3674c46673baad67d2394eb58285530d8333e65c3c9a143b4f4
MD5 8de6d2c0d058ad16e98bd0ab0f443417
BLAKE2b-256 8cd7b832df7eabfaad43ba0345695bbf3272995d607c4f0f0cba5001d8f05c0c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 72e466e5de12a327a09ed6d0116f024759b5146b335645c32241da84134a7f34
MD5 21ea520dbb6a7ebfd5e02fbd2c747f35
BLAKE2b-256 740cedcd7981bac8d80e2705232703e8ff3f235317f18bd49648ae3e495d9db2

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b0189f691cea4dc9fe074ea6b97da30a91d0882fa69724b4b34b51d2c1983473
MD5 5ffa25cb5d972210b9c14b8ab08a3233
BLAKE2b-256 15fede9f666a985003a698868ba7854a6344f39a51e2dfc7030488d7e47f2832

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 d7b1922b1403ccb3583218e8cd931b08e04c5442ca03dbaf6ea4fcf574ee2b24
MD5 887ace82eaffbfab0c49a30a56338b3f
BLAKE2b-256 02c74c11625e810b87aa06baecdf9634772e0e108ba52364c6c48892edd94471

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 13eeaeb0d5fe00fa99336f73fb5ab65c46109c7121cf87659b9601908b8b6178
MD5 db5203ee274d45e7dc66212db71d4ff5
BLAKE2b-256 523205c488fe4de2c312a25f228056552e4de5ee2669e1f84bfba425ffb89d2b

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ffa533acb1a9dcb6e26c4467fdc1347995fb168ec9f794b97545f6b72dee733c
MD5 2c5886418f9da1f3dd5565ed55d74ca4
BLAKE2b-256 197e15c40fbcf9b557aafd0254976b48528ae9d53519d1c6ba886235793efcfd

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b6cdca86120c3f9aa069f8d4e1c5422e92f833d705d719a2ba7082412f4c933b
MD5 2a505b68d861521c13c8a5edeef79466
BLAKE2b-256 6af1ac18a3c9de194520853a5bdfa0cb10e3d6432975a9057c9369efe54293a9

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7981cc6240d01d4480795d758ea2ee748257771f68127d630045e58fe1b5545a
MD5 bfb74e758f719f5ab8a61ccee2ad6c1c
BLAKE2b-256 b51093b90680b027996e4b7fb8cc37795397fbb9ed5671bf41aad23ca05736ef

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 758719e9613c47a274768f1926460955223fe0a03e7eda264f2b78b1b97a4743
MD5 a92b6d2eaa44caec7bbb1d0efba02505
BLAKE2b-256 69dac58cc62fce4d515fdf83e84602619099c4b6f4f91eef5e22fa5b25468cbc

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3e33e1d185206730b916b3e7d9bce1941c65b2a1488cdd0457ae21be385a7912
MD5 b427dc1ec6d1bc9b0cc2e1b2abf975e2
BLAKE2b-256 f31afcd3698fdd056122f0a8512f7545e949b93f696a41f15a13b69229b22f0a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f9433cb12731167b358fbcff9828d2294429986a03222031f6d14308eb643c77
MD5 33cab05dd09191750ce5bc4d398fe132
BLAKE2b-256 db7968bee5b006b84260ac5c12b5dc49f8b20bbc419181cfad7a9607c7c7c127

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da71e8fdb0d1a21f4b58b2c84bcbc2b89a472c073c5f7bdb9339f4cb3122c0e3
MD5 4ed017cc5b4db1e38e93ae2a831d7c4b
BLAKE2b-256 699437bffd27b027f349396ca1ba10cffb6d91b2568c32ee74414b6b0662b125

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 802a018776bd3cb7c5d23ba38ebbb1663a9f742be1d58e73b62d8c7cace6e607
MD5 ce5dcc78ce8fa1fabea60c1ff8a57a39
BLAKE2b-256 f5dbb034b69ef62c42986451d9384063cdaf5bce076af01161ac5d65c1263ad4

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7659058863d84a2c36c5a76c28bc8713d33eab03e677e67260d9e1cca43fc3bb
MD5 fd55af4bc263fdcac7ad057ea2840535
BLAKE2b-256 6991b09de8499fa2e24fb4e7ddda396b280290d458dd3feec16b9dcc25ab3bef

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.5-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 856.0 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 506547889f18db0acca787ffb9f287757cbfe9f0fadddd4e07c64ce0bd924e13
MD5 884f7b0ddeb3243fc434ff4ea47681ea
BLAKE2b-256 8ec0149f406289ee11186c976f3afeb28298415d2410953a600a9faef812b11a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6d8cc7e6e5c6fbcacdfe3cf7a86b60dcaf216216d86e6879ff52d488e5b11e27
MD5 d2827c6a410ed7041832050609db8e13
BLAKE2b-256 529762c20351a8fb16ddc0dd3179c607e7e4e30294317c21d00444c28fc1c790

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 35088e759b083398ab3c4154517476e116653b7403604677af9a894179f1042f
MD5 f0142aed9ec4e4788175105d4418c29d
BLAKE2b-256 01f1c05626058fd3969b2288602eb452fda68a124f14fd93833eddc5b2c6bc60

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8171fc6e4645e636161a9ef5b44b20605adbefe23cd990b68d72cae0b9c12509
MD5 99df6345e00be8c4ced57b4de95049f2
BLAKE2b-256 129fb2b8cb441cfeef739c8ce5255cb181659c98dbc203bb0eda633e1a99ce63

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 1d9bcfec5efd55b6268328cccd12956d833582d8da6385231a5c6c6201a1156a
MD5 c5d137d4a45db0efc17424ea70f664fc
BLAKE2b-256 f51b7f80c6c32ced87539c86b3404cce18d650f8813a40c6a91e118f4318f53f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 9a0c878d0980508e90e973a9cbfb591acc370085f2301c6aacadbd8362d52a36
MD5 a2d05b7243fbb819ad6f7c710851fd0a
BLAKE2b-256 2ca8de84189ac7634c2953008d7325f8138bc02e61cd87516172948ff6374651

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 16c982dd3cdd33cf4aac91027a263a081d1a8050dc33a27470367a391a8d1576
MD5 9624e9b3d4fc5566ec106a7c5507cadb
BLAKE2b-256 2f52fcde9692d0b918769e7b662af735e80b889f98729845f518e90e90482b89

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d9e0a656274ac75ec24499a06c0bc5eee67bcd8276c6061da7c05d549f1b1a61
MD5 52c51ec52af640311a0266b2ea348b17
BLAKE2b-256 79901eb3e53d3fd91a484874c8e26450b73908d4b65ad3eff0e516fb5b22eec7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d047b01637a31d9bf776b66438f574fd1db856ad14cf296c1f48bb6bef8a5aff
MD5 7b0aa64a7b503753cc44d4776cd2bd58
BLAKE2b-256 f6251b7c3978e69a8c7402ef8f42bb431caab16545323508748ee985cc738f56

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5feb75e905281e5c669e21c98d594acc3b222a8694d9342f17df988766d83748
MD5 02c62bd45ad11c666219a16c9689d816
BLAKE2b-256 1bed1baf1aafb6d8fc740cf98c2fae402d7d18cfc958c961100b3075f69c4756

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 80a4c8a2c5ae4b133fec6b5db1af9a4126ffa6eca18a558fe5b6ab8e330d3d78
MD5 5addcaa8601b56274ab4e29cd0991f91
BLAKE2b-256 fde7c8ed906a55b15448c07cdcab579a3f8f07dfc788e625db93a40bc0f3182f

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fb28f2b7173ed3678b4630b0c8b21503087d1cd082bae200dc2519ca38b26686
MD5 56d968c91168ee9f7bf42261ada34b20
BLAKE2b-256 b6eb11b3c22baf844b8a64be534f5982a7ed3c4499835a45cef913447f50d758

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 733bf3d7876bf6d8167e6436f99d6ea16a218ec2c8eb9da6048f20b9cc8733e2
MD5 3b6df40927782f2451a8a8f980407de4
BLAKE2b-256 904a34fd3c8730716df7362ac45a46e3f6f6a40991a8f30d5694ee59075de5d7

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fd94d952299ec73ea63a0fa4b699a2750785b6bb82aa56fd886d9023b86f90ab
MD5 5b77c44230b984ce48b20d7822963249
BLAKE2b-256 d18e0d5c7a8fce1aced375f656bec0a14db8d7f05b834f97374cc8482cbed9ad

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14587df847d0d50bd10cde0a198b5d64eedb7484c72b825f5c2ead6e6ff16eee
MD5 a1bd1501992fb5d6db1d45a3945c8381
BLAKE2b-256 e73a88121f404f29dbe069b57a1561d92c9f2867fcbd375af40f38ed06b3192c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cf9aceb4227fd09f9a20e505f78487b2089d6420ce232d288522ea0a78b986b9
MD5 53484efee53cac00d528308672fe1545
BLAKE2b-256 97557666f87a964cfdc4b753533e2dbe0609ae5888dd529c0e3323e50beb5dfc

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ac460d89b9759e37eef23fed05184179654882a241f6b2363df194f8940cc55f
MD5 879eeb2109a4132b041ea188530570ab
BLAKE2b-256 bbac8c218b61cbcf821f794e7d69601ee1bba97fbe337e320a01881e5ddad797

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3ed0c17e5b6fdd2ac3230bdefa908579971377c36aa4a2f132700fa8145040db
MD5 03ed4e98c14750f640ce680f88b2a376
BLAKE2b-256 b16037b16875867bdae4a1ec31ee34e18d791c7486fde24c2ce80b33b0caf72c

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 ebf682bdb0f01b6b1f9a9ffe918aa3ac84fbdadb998ffbfcd5f9b12bd280170f
MD5 20adb02a657a3483fd681bcea060197c
BLAKE2b-256 0a41d066a85b31c422eedfa5f430f0256ce5b7ae4a18e9770cb558d5c954a3e8

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 62b8f9f58e9dffaa86fef84db2705457a58e191a962124f2b815026ba79d9aba
MD5 ce5c4f22ddd4e8fd72fa29860d0639a1
BLAKE2b-256 d8e5d39836d267b1d9a0ad27dc9b46ee9dc9e0233402454d6963ce25c8021bd6

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0d34b0e8e29f80cb2ac8afe8fb7b01a542b136ffbf7e2b9983d11bce49398f68
MD5 441972bc063ac4fe0c8450fd76bfa816
BLAKE2b-256 c81e5ea0fe144103505823fcb1b5cd61207a91e2113995da4d25ecba732c815a

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8e943c5cbd10e15369be1f371ef303cb413c1008f64d93bd13762ea06ca84d59
MD5 971f9fed55808e410cc73df7123bd58a
BLAKE2b-256 f01011a8ce9d057729487acf006111d9ba14ee2b0991e6ddaa5160edbf954bdc

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4f2e985172bb76c9179e11fb67d9c9ecbee4933740eca2977797094df02498d
MD5 b55891e936e857a73629c6c2c0e84ecf
BLAKE2b-256 3445fcb1ec691d702c04691d2dbbb86b0194a96cdc2b4a19d31647f1179a09c9

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a42d1f7b8988f50013e703ed27b5e216ef8a725b2f4ac53754ad0476020b26f4
MD5 ec4d98c8efee90660fb7bcdb868372e9
BLAKE2b-256 b1b2d246e8617ab608c84c3f46957a5c0418694cba498e662b93854537bb8dea

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 73362eb1c3d02f32e4c7f0d77eb284e9a13f278cff224f71e8f60e2aff5b6a5d
MD5 3cf4ad8b94600da9917540f129185194
BLAKE2b-256 808103cf16a0bdd9f7bcd4ca0b2bcd270674e033a92ba6af4a1419cecec94b25

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e8032492021b0aa55a623d6f6e739a5d4aaabc32af379c2a5656bf1e9e178bf1
MD5 792ca9b9f53684f9b52afb11a4996a5b
BLAKE2b-256 4390a2225af48c5f96db377cb6b0ddeef9bf72d1e9c10b12f183c4c113413502

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ebd17688b75b6fa983e8586cad30f36eb9736b860946cc8b633b9442c9481831
MD5 37274b43e1f3af6fe2d96fc17e6dbb5f
BLAKE2b-256 5685874ce81031cee02234dc9d8cab0b786a5ddcd355685c99d33354a4a67b84

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 252dc3d1c3d613b8db1b59d13381937e420c99f8a351ffa0e78c2f54746e107f
MD5 da851b77cabf7a1dfa678f984a52dd06
BLAKE2b-256 66666f5a76b89320d13a87f2adf4f971b41be5f818ec4030415af80c18556862

See more details on using hashes here.

Provenance

File details

Details for the file rapidfuzz-3.9.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 518dec750a30f115ba1299ef2547cf468a69f310581a030c8a875257de747c5f
MD5 94c21acdacc58fc8c613198afcdae979
BLAKE2b-256 31481f5e46621f4da913ba1160b35d08f816769eb75e9eadabf1a041db9cdebb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page