Tools for running RapidMiner processes and managing RapidMiner repositories.
Project description
RapidMiner Python package
This Python package allows you to interact with RapidMiner Studio and AI Hub. You can collaborate using the RapidMiner repository and leverage the scalable RapidMiner AI Hub infrastructure to run processes. This document shows examples on how to use the package. Additional notebook files provide more advanced examples. There is an API document for each classes: Project, Studio, Server, Scoring. You can find the changelog for the package here.
Table of contents
Requirements
- RapidMiner Studio 9.7.0 for Studio class
- RapidMiner AI Hub 9.7.0 for Server class
- Python Scripting extension 9.7.0 or later installed for both Studio and RapidMiner AI Hub, download it from the Marketplace
Known current limitations
- Python version:
- Extensive tests were only carried out using Python 3.7, but earlier versions are expected to work as well.
- Python 2 is not supported.
- RapidMiner Studio and AI Hub processes guarantee reproducibility. That means you should always get the same result after a version update. The same feature cannot be guaranteed when using this Python library (the library depends on other libraries that are not in our control).
- RapidMiner AI Hub with SAML authentication is not supported.
Overview
Both Studio and Server classes provide a read and a write method for reading / writing data and other objects, and a run method to run processes. The method signatures are the same, with somewhat different extra parameters. To work with versioned projects, a feature that arrives with RapidMiner AI Hub 9.7.0, use the Project class that provides read and write methods to the data file format used in them.
Studio class requires a local Studio installation and is suitable in the following cases:
- Implementing certain data science steps in Python using your favorite IDE or notebook implementation. You may even use the resulting code afterwards in a RapidMiner process within an Execute Python operator.
- You are using coding primarily, but you want to incorporate methods that are impemented in a RapidMiner process.
- Creating batch tasks that also interact with the repository and / or run processes.
Server class connects directly to a RapidMiner AI Hub instance without the need of a Studio installation. It is suitable in the following cases:
- Collaborating with RapidMiner users, sharing data easily.
- Calling, running, scheduling processes on the RapidMiner AI Hub platform from a local script.
Project class is required to work with the git-based versioned repositories called projects. Projects can be shared using RapidMiner AI Hub. The shared data format allows Python coders and RapidMiner users to easily work on the same data. To summarize, this class is suitable in the following cases:
- Using versioned projects to collaborate with RapidMiner users and share data easily.
Installation
The library can be installed easily:
-
install in one step:
$ pip install rapidminer
-
or clone the repository and install:
$ git clone https://github.com/rapidminer/python-rapidminer.git $ cd python-rapidminer $ python setup.py install
Project
Projects are a new feature of RapidMiner AI Hub 9.7.0 that allows you to have versioned repositories as the storage layer shared between RapidMiner users and Python coders. You can use any kind of git client, e.g. git commands, to clone, checkout a repository from RapidMiner AI Hub, and push your modifications there. Use the Project class to read and write the common data file format (HDF5).
Let's say you have cloned your versioned project into the local myproject
folder using the git clone command. After that, point the Project class to this folder:
import rapidminer
project = rapidminer.Project("myproject")
Reading ExampleSet
Once you have a project instance, you can read a RapidMiner ExampleSet in Python by running the following line (let's assume your data set called mydata
is inside the data
folder):
df = project.read("data/mydata")
The resulting df
is a pandas
DataFrame
object, which you can use in the conventional way.
Writing ExampleSet
You can save any pandas
DataFrame
object to a project with the following command:
project.write(df, "data/mydata_modified")
After writing the data set to the disk, you can use git commit and push to publish your changes to the remote project.
Running a process
Use Studio or Server classes to run a process from a project, see examples below.
Studio
You need to have a locally installed RapidMiner Studio instance to use this class. The only thing you need to provide is your installation path. Once that is specified, you can read from and write data or other objects to any configured repository. You can also run processes from files or from the repository. In this section, we show you some examples on how to read and write repository data and run processes. For more advanced scenarios see the included IPython notebook and the documentation of the Studio
class.
Note that each Studio
method starts a Studio instance in the background and stops it when it is done. It is not recommended to run multiple instances in parallel, e.g. on different Notebook tabs. If you have several RapidMiner extensions installed, all of them will be loaded each time, that may lead to longer runtime. Provide multiple parameters to a read or write call, if possible, to avoid the startup overhead.
First you need a Connector
object to interact with Studio. Once you have that, you can read and write data or run a process with a single line. To create a Studio
Connector
object, run the following code:
connector = rapidminer.Studio("/path/to/you/studio/installation")
where you replace "/path/to/you/studio/installation"
with the location of your Studio installation. In case of Windows, a typical path is "C:/Program Files/RapidMiner/RapidMiner Studio"
- note that you should either use forward "/" as separators or put an r
before the first quote character to indicate raw string
. In case of Mac, the path is usually "/Applications/RapidMiner Studio.app/Contents/Resources/RapidMiner-Studio"
. Alternatively you can define this location via the RAPIDMINER_HOME
environment variable.
Reading ExampleSet
Once you have a connector instance, you can read a RapidMiner ExampleSet in Python by running the following line:
df = connector.read_resource("//Samples/data/Iris")
The resulting df
is a pandas
DataFrame
object, which you can use in the conventional way.
Writing ExampleSet
You can save any pandas
DataFrame
object to a RapidMiner repository (or file) with the following command:
connector.write_resource(df, "//Local Repository/data/mydata")
where df
is the DataFrame
object you want to write to the repository, and "//Local Repository/data/mydata"
is the location where you want to store it.
Running a process
To run a process execute the following line:
df = connector.run_process("//Samples/processes/02_Preprocessing/01_Normalization")
You will get the results as pandas
DataFrames
. You can also define inputs, and many more. For more examples, see the examples notebook
Server
With Server
class, you can directly connect to a local or remote RapidMiner AI Hub instance without the need for any local RapidMiner (Studio) installation. You can read data from and write data to the remote repository and you can execute processes using the scalable Job Agent architecture. In this section, we show you some examples on how to read and write repository data and run processes. For more advanced scenarios see the included IPython notebook and the documentation of the Server
class.
Installation of Server API
The Server
class requires a web service backend to be installed on RapidMiner AI Hub. This is done automatically on the first instantiation of the Server class. The repository folder /shared
is used by default to store the backend process. This folder exists and is accessible by anyone starting from RapidMiner Server 9.6.0.
Server
class instantiation can be fully automated (thus, no need for user input), if you specify url
, username
and password
parameters.
On the RapidMiner AI Hub web UI you can see the installed web service backend (Processes->Web Services). It has the name Repository Service by default, but you can change that with the optional parameter of Server
class named webservice
. You can change the process path location by setting 'processpath', but you need to make sure that it will be executable by all users of the Server API. If the web service is deleted, the next Server
instantiation will re-create it.
Usage of Server API
To create a Server
Connector
object, run the following code:
connector = rapidminer.Server("https://myserver.mycompany.com:8080", username="myrmuser")
where you replace "https://myserver.mycompany.com:8080"
with the url of your RapidMiner AI Hub instance and "myrmuser"
with your username.
Reading ExampleSet
Once you have a connector instance, you can read a RapidMiner ExampleSet in Python by running the following line:
df = connector.read_resource("/home/myrmuser/data/mydata")
You can also read the latest version of a data set from a versioned project by running the following line:
df = connector.read_resource("data/mydata", project="myproject")
The resulting df
in both cases is a pandas
DataFrame
object, which you can use in the conventional way.
Writing ExampleSet
You can save any pandas
DataFrame
object to the RapidMiner AI Hub repository with the following command:
connector.write_resource(df, "/home/myrmuser/data/myresult")
where df
is the DataFrame
object you want to write to the repository, and "/home/myrmuser/data/myresult"
is the location where you want to store it.
If you want to write to a versioned project, use the Project class' write method to write to the local disk first (after cloning the project locally), then use git commit and push to publish your changes to RapidMiner AI Hub.
Running a process
To run a process execute the following line:
df = connector.run_process("/home/myrmsuer/process/transform_data", inputs=df)
You will get the results as pandas
DataFrames
. You can also define multiple inputs, and other parameters. For more examples, see the examples notebook.
You may want to run a process that resides in a versioned project. Note that in this case, inputs and outputs are not allowed, as the process can only directly read from the project and potentially write back using an automatic commit and push. To run the latest version of a process in project, use the following line:
df = connector.run_process("processes/myprocess", project="myproject")
Scoring
This class allows you to easily use a deployed Real-Time Scoring service. You only need to provide the RapidMiner AI Hub url and the particular scoring service endpoint to create a class instance. After that, you can use the predict method to do scoring on a pandas DataFrame and get the result in a pandas DataFrame as well. For instructions on how to deploy Real-Time Scoring on RapidMiner AI Hub, please refer to its documentation.
sc = rapidminer.Scoring("http://myserver.mycompany.com:8090", "score-sales/score1")
prediction = sc.predict(df)
where the scoring endpoint is at "score-sales/score1"
that can be applied to the dataset df
, and the resulting prediction
is a pandas
DataFrame
object. You can find the Scoring
class documentation here.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for rapidminer-9.7.1.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ae118d72021b4e3e6d2e8e42da00e90bed26a5e833d903f86271f0412734aeb5 |
|
MD5 | 5225a2deaf7c41b0354365237fc80c3c |
|
BLAKE2b-256 | cd9a87161225acd58efdac05d42ff74a18f4f8ad60767ea7e11169f19b45fad5 |