rapid predict is a python package to simplifies the process of fitting and evaluating multiple machine learning models on a dataset.
Project description
RapidPredict
RapidPredict is a Python library that simplifies the process of fitting and evaluating multiple machine learning models from scikit-learn. It's designed to provide a quick way to test various algorithms on a given dataset and compare their performance.
Installation
To install Rapid Predict from PyPI:
pip install rapidpredict
pip install -U rapidpredict
Usage
To use Rapid Predict in a project:
import rapidpredict
Classification
Example :
from rapidpredict.supervised import *
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()
X = data.data
y= data.target
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.25,random_state =123)
clf = rapidclassifier(verbose= 0,ignore_warnings=True, custom_metric=None)
models , predictions = clf.fit(X_train, X_test, y_train, y_test)
|Model |Accuracy |Balanced Accuracy | ROC | AUC | Recall | Precision | F1 Score | 5 Fold F1 | Time Taken |
|-------------------------------|------|------|------|------|------|------|------|------|
| QuadraticDiscriminantAnalysis | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.96 | 0.09 |
| RandomForestClassifier | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.96 | 1.21 |
| LogisticRegression | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.17 |
| ExtraTreesClassifier | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.97 | 0.80 |
| RidgeClassifier | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.96 | 0.13 |
| LinearSVC | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.96 | 0.10 |
| SVC | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.97 | 0.10 |
| RidgeClassifierCV | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.96 | 0.17 |
| LabelPropagation | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.94 | 0.17 |
| LabelSpreading | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.96 | 0.19 |
| SGDClassifier | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.09 |
| Perceptron | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.08 |
| KNeighborsClassifier | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.11 |
| DecisionTreeClassifier | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.93 | 0.09 |
| BernoulliNB | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.93 | 0.09 |
| LinearDiscriminantAnalysis | 0.98 | 0.97 | 0.97 | 0.98 | 0.98 | 0.98 | 0.96 | 0.14 |
| CalibratedClassifierCV | 0.98 | 0.97 | 0.97 | 0.98 | 0.98 | 0.98 | 0.97 | 0.24 |
| AdaBoostClassifier | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.95 | 0.89 |
| PassiveAggressiveClassifier | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.09 |
| XGBClassifier | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.45 |
| BaggingClassifier | 0.97 | 0.96 | 0.96 | 0.97 | 0.97 | 0.97 | 0.95 | 0.32 |
| NuSVC | 0.97 | 0.95 | 0.95 | 0.97 | 0.97 | 0.96 | 0.95 | 0.12 |
| NearestCentroid | 0.97 | 0.95 | 0.95 | 0.97 | 0.97 | 0.96 | 0.94 | 0.08 |
| GaussianNB | 0.97 | 0.95 | 0.95 | 0.97 | 0.97 | 0.96 | 0.94 | 0.08 |
| ExtraTreeClassifier | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.93 | 0.08 |
| DummyClassifier | 0.62 | 0.50 | 0.50 | 0.62 | 0.39 | 0.48 | 0.77 | 0.08 |
Plot Target values
plot_target(y)
Comparing models using bar graph
compareModels_bargraph(predictions["F1 Score"] ,models.index)
Comparing models using box plot
compareModels_boxplot(predictions["F1 Score"] ,models.index)
Heatmap
This code updated from github "Lazypredic-Shankar Rao Pandala"
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file rapidpredict-0.0.0.9.tar.gz
.
File metadata
- Download URL: rapidpredict-0.0.0.9.tar.gz
- Upload date:
- Size: 9.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 13bd84a7c805f8888a5ef77e484989459eb4e433df8a75d3fe8b48757396c7c4 |
|
MD5 | 020639cb7ff4e0f03526927a8f5b7e13 |
|
BLAKE2b-256 | 591fe379ed63a1732efe47790eb33279023c954c97bc2c864b8d8783501247dd |
File details
Details for the file rapidpredict-0.0.0.9-py3-none-any.whl
.
File metadata
- Download URL: rapidpredict-0.0.0.9-py3-none-any.whl
- Upload date:
- Size: 7.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 51d54fc1396339bc4ef373c8c0fdacb5b4838c753cea7c2fcf9c5fa1458dcd7f |
|
MD5 | b27148803f1fd68923b6f810495a873f |
|
BLAKE2b-256 | 3bbffd72909c68e33030002476ac4437b5227b531e22198b69c0452261659b40 |