Skip to main content

rapid predict is a python package to simplifies the process of fitting and evaluating multiple machine learning models on a dataset.

Project description

RapidPredict

RapidPredict is a Python library that simplifies the process of fitting and evaluating multiple machine learning models from scikit-learn. It's designed to provide a quick way to test various algorithms on a given dataset and compare their performance.

Installation

To install Rapid Predict from PyPI:

pip install rapidpredict



pip install -U rapidpredict

Usage

To use Rapid Predict in a project:

import rapidpredict

Classification

Example :

from rapidpredict.supervised import *

from sklearn.model_selection import train_test_split

from sklearn.datasets import load_breast_cancer

data = load_breast_cancer()

X = data.data

y= data.target



X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=.25,random_state =123)





clf = rapidclassifier(verbose= 0,ignore_warnings=True, custom_metric=None)

models , predictions = clf.fit(X_train, X_test, y_train, y_test)







|Model |Accuracy	 |Balanced Accuracy |	ROC | AUC |	Recall |	Precision | F1 Score |	5 Fold F1 |	Time  Taken |

|-------------------------------|------|------|------|------|------|------|------|------|

| QuadraticDiscriminantAnalysis | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.96 | 0.09 |

| RandomForestClassifier        | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.96 | 1.21 |

| LogisticRegression            | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.17 |

| ExtraTreesClassifier          | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.97 | 0.80 |

| RidgeClassifier               | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.96 | 0.13 |

| LinearSVC                     | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.96 | 0.10 |

| SVC                           | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.97 | 0.10 |

| RidgeClassifierCV             | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.96 | 0.17 |

| LabelPropagation              | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.94 | 0.17 |

| LabelSpreading                | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.96 | 0.19 |

| SGDClassifier                 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.09 |

| Perceptron                    | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.08 |

| KNeighborsClassifier          | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.11 |

| DecisionTreeClassifier        | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.93 | 0.09 |

| BernoulliNB                   | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.93 | 0.09 |

| LinearDiscriminantAnalysis    | 0.98 | 0.97 | 0.97 | 0.98 | 0.98 | 0.98 | 0.96 | 0.14 |

| CalibratedClassifierCV        | 0.98 | 0.97 | 0.97 | 0.98 | 0.98 | 0.98 | 0.97 | 0.24 |

| AdaBoostClassifier            | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.95 | 0.89 |

| PassiveAggressiveClassifier   | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.09 |

| XGBClassifier                 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.45 |

| BaggingClassifier             | 0.97 | 0.96 | 0.96 | 0.97 | 0.97 | 0.97 | 0.95 | 0.32 |

| NuSVC                         | 0.97 | 0.95 | 0.95 | 0.97 | 0.97 | 0.96 | 0.95 | 0.12 |

| NearestCentroid               | 0.97 | 0.95 | 0.95 | 0.97 | 0.97 | 0.96 | 0.94 | 0.08 |

| GaussianNB                    | 0.97 | 0.95 | 0.95 | 0.97 | 0.97 | 0.96 | 0.94 | 0.08 |

| ExtraTreeClassifier           | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.93 | 0.08 |

| DummyClassifier               | 0.62 | 0.50 | 0.50 | 0.62 | 0.39 | 0.48 | 0.77 | 0.08 |

Plot Target values

plot_target(y)

plot target

Comparing models using bar graph

compareModels_bargraph(predictions["F1 Score"] ,models.index)

Comparing models using bar graph

Comparing models using box plot

compareModels_boxplot(predictions["F1 Score"] ,models.index)

Comparing models using box plot

Heatmap

heatmap Half Heatmap of Pearson Correlations

This code updated from github "Lazypredic-Shankar Rao Pandala"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidpredict-0.0.0.9.tar.gz (9.1 kB view details)

Uploaded Source

Built Distribution

rapidpredict-0.0.0.9-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file rapidpredict-0.0.0.9.tar.gz.

File metadata

  • Download URL: rapidpredict-0.0.0.9.tar.gz
  • Upload date:
  • Size: 9.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for rapidpredict-0.0.0.9.tar.gz
Algorithm Hash digest
SHA256 13bd84a7c805f8888a5ef77e484989459eb4e433df8a75d3fe8b48757396c7c4
MD5 020639cb7ff4e0f03526927a8f5b7e13
BLAKE2b-256 591fe379ed63a1732efe47790eb33279023c954c97bc2c864b8d8783501247dd

See more details on using hashes here.

File details

Details for the file rapidpredict-0.0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for rapidpredict-0.0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 51d54fc1396339bc4ef373c8c0fdacb5b4838c753cea7c2fcf9c5fa1458dcd7f
MD5 b27148803f1fd68923b6f810495a873f
BLAKE2b-256 3bbffd72909c68e33030002476ac4437b5227b531e22198b69c0452261659b40

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page