Monitoring utility for machine learning experiments
Project description
Rarog is a monitoring utility for machine learning experiments. You may use it as a light-weight alternative for TensorBoard or Visdom. Rarog stores all records in ClickHouse database using ClickHouse Python Driver.
Features
log common python data types(bool, int, float, string, iterables)
log 1d numpy arrays
distributed experiments monitoring
Setup
Install via pip:
pip install rarog
Start ClickHouse database if required:
docker run -d --name clickhouse --ulimit nofile=262144:262144 -p 9000:9000 yandex/clickhouse-server
Important note: the example above is just the easiest way. For production, you should setup database backups or replicated.
Rarog supports Python 3.4 and newer.
Usage
import random
from rarog import Tracker
tracker = Tracker(name='experiment_name')
# trace values one by one
for step in range(10):
tracker.trace(
name='int_value',
value=random.randint(10, 20),
step=step)
tracker.trace(
name='float_value',
value=random.random(),
step=step)
# provide experiment phase as a string
tracker.trace(
name='list_value',
value=[random.random(), random.random()],
step=step,
phase='val')
# trace values by dict
for step in range(10, 20):
tracker.multy_trace({
'int_value': random.randint(10, 20),
'float_value': random.random()
}, step=step)
# get names of traced metrics
tracker.metrics
# Out: ['time', 'step', 'phase', 'int_value', 'float_value', 'list_value']
If you are going to record more than 100 entries per second, it’s better to use sync_step or sync_seconds arguments. Thus writing to the database will be done with some period, which is much faster.
# `exist_ok` flag allow to use the same name for experiment
step_tracker = Tracker(name='experiment_name', sync_step=1000, exist_ok=True)
for step in range(20, 10**4):
step_tracker.trace(name='bool_value', value=bool(random.randint(0, 1)), step=step)
step_tracker.multy_trace({
'int_value': random.randint(10, 20),
'float_value': random.random()
}, step=step)
# tracker should be manually synchronized after last entry
step_tracker.sync_accumulated_values()
Experiments can be handled via manager
from rarog import Manager
manager = Manager()
manager.list_experiments()
# Out: ['experiment_name']
manager.remove_experiment('experiment_name')
Retrieving your data
TODO (manually and with visualization)
TODO
Pytorch tensors support
Support 2d arrays
Tensorflow data types support
Split Aggregation View for summarization and underlying tables
Store experiments metadata(config, author, etc.)
Autodocs
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.