Skip to main content

Python library for loading GIS raster data to standard cloud-based data warehouses that don't natively support raster data.

Project description

raster-loader

PyPI version PyPI downloads Tests Documentation Status

Python library for loading GIS raster data to standard cloud-based data warehouses that don't natively support raster data.

Raster Loader is currently tested on Python 3.8, 3.9, 3.10, and 3.11.

Documentation

The Raster Loader documentation is available at raster-loader.readthedocs.io.

Install

pip install -U raster-loader

pip install -U raster-loader"[bigquery]"
pip install -U raster-loader"[snowflake]"

Installing from source

git clone https://github.com/cartodb/raster-loader
cd raster-loader
pip install .

Usage

There are two ways you can use Raster Loader:

  • Using the CLI by running carto in your terminal
  • Using Raster Loader as a Python library (import raster_loader)

CLI

After installing Raster Loader, you can run the CLI by typing carto in your terminal.

Currently, Raster Loader supports uploading raster data to BigQuery. Accessing BigQuery with Raster Loader requires the GOOGLE_APPLICATION_CREDENTIALS environment variable to be set to the path of a JSON file containing your BigQuery credentials. See the GCP documentation for more information.

Two commands are available:

Uploading to BigQuery

carto bigquery upload loads raster data from a local file to a BigQuery table. At a minimum, the carto bigquery upload command requires a file_path to a local raster file that can be read by GDAL and processed with rasterio. It also requires the project (the GCP project name) and dataset (the BigQuery dataset name) parameters. There are also additional parameters, such as table (BigQuery table name) and overwrite (to overwrite existing data).

For example:

carto bigquery upload \
    --file_path /path/to/my/raster/file.tif \
    --project my-gcp-project \
    --dataset my-bigquery-dataset \
    --table my-bigquery-table \
    --overwrite

This command uploads the TIFF file from /path/to/my/raster/file.tif to a BigQuery project named my-gcp-project, a dataset named my-bigquery-dataset, and a table named my-bigquery-table. If the table already contains data, this data will be overwritten because the --overwrite flag is set.

Inspecting a raster file on BigQuery

Use the carto bigquery describe command to retrieve information about a raster file stored in a BigQuery table.

At a minimum, this command requires a GCP project name, a BigQuery dataset name, and a BigQuery table name.

For example:

carto bigquery describe \
    --project my-gcp-project \
    --dataset my-bigquery-dataset \
    --table my-bigquery-table

Using Raster Loader as a Python library

After installing Raster Loader, you can import the package into your Python project. For example:

from raster_loader import rasterio_to_bigquery, bigquery_to_records

Currently, Raster Loader supports uploading raster data to BigQuery. Accessing BigQuery with Raster Loader requires the GOOGLE_APPLICATION_CREDENTIALS environment variable to be set to the path of a JSON file containing your BigQuery credentials. See the GCP documentation for more information.

You can use Raster Loader to upload a local raster file to an existing BigQuery table using the rasterio_to_bigquery() function:

rasterio_to_bigquery(
    file_path = 'path/to/raster.tif',
    project_id = 'my-project',
    dataset_id = 'my_dataset',
    table_id = 'my_table',
)

This function returns True if the upload was successful.

You can also access and inspect a raster file from a BigQuery table using the bigquery_to_records() function:

records_df = bigquery_to_records(
    project_id = 'my-project',
    dataset_id = 'my_dataset',
    table_id = 'my_table',
)

This function returns a DataFrame with some samples from the raster table on BigQuery (10 rows by default).

Development

See CONTRIBUTING.md for information on how to contribute to this project.

ROADMAP.md contains a list of features and improvements planned for future versions of Raster Loader.

Releasing

1. Create and merge a release PR updating the CHANGELOG

  • Branch: release/X.Y.Z
  • Title: Release vX.Y.Z
  • Description: CHANGELOG release notes

Example:

## [0.7.0] - 2024-06-02

### Added
- Support raster overviews (#140)

### Enhancements
- increase chunk-size to 10000 (#142)

### Bug Fixes
- fix: make the gdalwarp examples consistent (#143)

2. Create and push a tag vX.Y.Z

This will trigger an automatic workflow that will publish the package at https://pypi.org/project/raster-loader.

3. Create the GitHub release

Go to the tags page (https://github.com/CartoDB/raster-loader/tags), select the release tag and click on "Create a new release"

  • Title: vX.Y.Z
  • Description: CHANGELOG release notes

Example:

### Added
- Support raster overviews (#140)

### Enhancements
- increase chunk-size to 10000 (#142)

### Bug Fixes
- fix: make the gdalwarp examples consistent (#143)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

raster_loader-0.8.1.tar.gz (2.1 MB view details)

Uploaded Source

Built Distribution

raster_loader-0.8.1-py3-none-any.whl (35.5 kB view details)

Uploaded Python 3

File details

Details for the file raster_loader-0.8.1.tar.gz.

File metadata

  • Download URL: raster_loader-0.8.1.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for raster_loader-0.8.1.tar.gz
Algorithm Hash digest
SHA256 78e955bd4d2b69a9b48c27dc826bbccd0d467a1b161702e812cec18a01a92d47
MD5 ebf93e0176080c5bc54292c97341855c
BLAKE2b-256 ad53605a817348074c9af8a3d6bda7241f3033a58c673c5f7968e0c3d9d643f2

See more details on using hashes here.

File details

Details for the file raster_loader-0.8.1-py3-none-any.whl.

File metadata

File hashes

Hashes for raster_loader-0.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 011e5c6bf2d69444d19f44fd8a13d4f234fb7218749b58a8fbfc682fc98baa56
MD5 4a86b3c91ce45ccf0063d6d80542644e
BLAKE2b-256 20db4964fc52dcae3dd2f1e70abce62f17155c63ecac098510c180308a04d847

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page