Skip to main content
Join the official 2020 Python Developers SurveyStart the survey!

rater

Project description

rater

rater is a comparative framework for multimodal recommender systems. It was developed to facilitate the designing, comparing, and sharing of recommendation models.

Feature

Data

  1. ml-1m: http://files.grouplens.org/datasets/movielens/ml-1m.zip
  2. delicious-2k: http://files.grouplens.org/datasets/hetrec2011/hetrec2011-delicious-2k.zip
  3. lastfm-dataset-360K: http://mtg.upf.edu/static/datasets/last.fm/lastfm-dataset-360K.tar.gz
  4. slashdot: http://snap.stanford.edu/data/soc-Slashdot0902.txt.gz
  5. epinions: http://snap.stanford.edu/data/soc-Epinions1.txt.gz
  6. ml-100k: http://files.grouplens.org/datasets/movielens/ml-100k.zip
  7. Criteo(dac full): https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz
  8. Criteo(dac sample): http://labs.criteo.com/wp-content/uploads/2015/04/dac_sample.tar.gz

Install

pip3 install rater

or

git clone https://github.com/shibing624/rater.git
cd rater
python3 setup.py install

Usage

Load the built-in MovieLens 1M dataset (will be downloaded if not cached):

Output:

MAE RMSE AUC NDCG@10 NDCG@20 Recall@10 Recall@20 Train (s) Test (s)
MF 0.7430 0.8998 0.7445 0.0479 0.0556 0.0352 0.0654 0.13 1.57
PMF 0.7534 0.9138 0.7744 0.0617 0.0719 0.0479 0.0880 2.18 1.64
BPR N/A N/A 0.8695 0.0975 0.1129 0.0891 0.1449 3.74 1.49

For more details, please take a look at our examples.

Models

The models supported are listed below. Why don't you join us to lengthen the list?

Contribute

Your contributions at any level of the library are welcome. If you intend to contribute, please:

  • Fork the rater repository to your own account.
  • Make changes and create pull requests.

You can also post bug reports and feature requests in GitHub issues.

License

Apache License 2.0

Reference

  • [Multilayer Perceptron Based Recommendation]
  • [Autoencoder Based Recommendation]
  • [CNN Based Recommendation]
  • [RNN Based Recommendation]
  • [Restricted Boltzmann Machine Based Recommendation]
  • [Neural Attention Based Recommendation]
  • [Neural AutoRegressive Based Recommendation]
  • [Deep Reinforcement Learning for Recommendation]
  • [GAN Based Recommendation]
  • [Deep Hybrid Models for Recommendation]
  • maciejkula/spotlight
  • shenweichen/DeepCTR
  • [推荐系统实践]
  • Magic-Bubble/RecommendSystemPractice

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for rater, version 0.1.1
Filename, size File type Python version Upload date Hashes
Filename, size rater-0.1.1.tar.gz (62.0 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page