Skip to main content

Reinforcement learning algorithms in RLlib and PyTorch.

Project description

PyPI GitHub Workflow Status Dependabot GitHub CodeStyle

Reinforcement learning algorithms in RLlib and PyTorch.

Introduction

Raylab provides agents and environments to be used with a normal RLlib/Tune setup.

import ray
from ray import tune
import raylab

def main():
    raylab.register_all_agents()
    raylab.register_all_environments()
    ray.init()
    tune.run(
        "NAF",
        local_dir=...,
        stop={"timesteps_total": 100000},
        config={
            "env": "CartPoleSwingUp-v0",
            "exploration_config": {
                "type": tune.grid_search([
                    "raylab.utils.exploration.GaussianNoise",
                    "raylab.utils.exploration.ParameterNoise"
                ])
            }
            ...
        },
    )

if __name__ == "__main__":
    main()

One can then visualize the results using raylab dashboard

https://i.imgur.com/bVc6WC5.png

Installation

pip install raylab

Algorithms

Paper

Agent Name

Actor Critic using Kronecker-factored Trust Region

ACKTR

Trust Region Policy Optimization

TRPO

Normalized Advantage Function

NAF

Stochastic Value Gradients

SVG(inf)/SVG(1)/SoftSVG

Soft Actor-Critic

SoftAC

Streamlined Off-Policy (DDPG)

SOP

Model-Based Policy Optimization

MBPO

Model-based Action-Gradient-Estimator

MAGE

Command-line interface

For a high-level description of the available utilities, run raylab --help

Usage: raylab [OPTIONS] COMMAND [ARGS]...

  RayLab: Reinforcement learning algorithms in RLlib.

Options:
  --help  Show this message and exit.

Commands:
  dashboard    Launch the experiment dashboard to monitor training progress.
  episodes     Launch the episode dashboard to monitor state and action...
  experiment   Launch a Tune experiment from a config file.
  find-best    Find the best experiment checkpoint as measured by a metric.
  info         View information about an agent's config parameters.
  rollout      Wrap `rllib rollout` with customized options.
  test-module  Launch dashboard to test generative models from a checkpoint.

Packages

The project is structured as follows

raylab
|-- agents            # Trainer and Policy classes
|-- cli               # Command line utilities
|-- envs              # Gym environment registry and utilities
|-- logger            # Tune loggers
|-- policy            # Extensions and customizations of RLlib's policy API
|   |-- losses        # RL loss functions
|   |-- modules       # PyTorch neural network modules for TorchPolicy
|-- pytorch           # PyTorch extensions
|-- utils             # miscellaneous utilities

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

raylab-0.11.0.tar.gz (142.2 kB view details)

Uploaded Source

Built Distribution

raylab-0.11.0-py3-none-any.whl (237.0 kB view details)

Uploaded Python 3

File details

Details for the file raylab-0.11.0.tar.gz.

File metadata

  • Download URL: raylab-0.11.0.tar.gz
  • Upload date:
  • Size: 142.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.8.3 Linux/5.3.0-1032-azure

File hashes

Hashes for raylab-0.11.0.tar.gz
Algorithm Hash digest
SHA256 69d9362e17c2226d512b23618d2e2e188f2316e6eb9ef6bcfbcb987c1f9d3787
MD5 bf84aa091067d9b96dbdc9fab10ae32f
BLAKE2b-256 47912290a078d439ed428eddbf7f5931c8e0b218aa96c6d749b49471bc86e21c

See more details on using hashes here.

File details

Details for the file raylab-0.11.0-py3-none-any.whl.

File metadata

  • Download URL: raylab-0.11.0-py3-none-any.whl
  • Upload date:
  • Size: 237.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.8.3 Linux/5.3.0-1032-azure

File hashes

Hashes for raylab-0.11.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8c7ec211f7e7ca9e0f92b029a54a613c5d40be3b8ce557ec3b50c17682067abe
MD5 9d3ab68c65ca1cb2f87f4d7d82c0b7d9
BLAKE2b-256 04590dcea662ca865b5b920657395763eaaaf7e243f8db72522ad0451f5d85e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page