Skip to main content

Reinforcement learning algorithms in RLlib and PyTorch.

Project description

PyPI GitHub Workflow Status Dependabot GitHub CodeStyle

Reinforcement learning algorithms in RLlib and PyTorch.

Introduction

Raylab provides agents and environments to be used with a normal RLlib/Tune setup.

import ray
from ray import tune
import raylab

def main():
    raylab.register_all_agents()
    raylab.register_all_environments()
    ray.init()
    tune.run(
        "NAF",
        local_dir=...,
        stop={"timesteps_total": 100000},
        config={
            "env": "CartPoleSwingUp-v0",
            "exploration_config": {
                "type": tune.grid_search([
                    "raylab.utils.exploration.GaussianNoise",
                    "raylab.utils.exploration.ParameterNoise"
                ])
            }
            ...
        },
    )

if __name__ == "__main__":
    main()

One can then visualize the results using raylab dashboard

https://i.imgur.com/bVc6WC5.png

Installation

pip install raylab

Algorithms

Paper

Agent Name

Actor Critic using Kronecker-factored Trust Region

ACKTR

Trust Region Policy Optimization

TRPO

Normalized Advantage Function

NAF

Stochastic Value Gradients

SVG(inf)/SVG(1)/SoftSVG

Soft Actor-Critic

SoftAC

Streamlined Off-Policy (DDPG)

SOP

Model-Based Policy Optimization

MBPO

Model-based Action-Gradient-Estimator

MAGE

Command-line interface

For a high-level description of the available utilities, run raylab --help

Usage: raylab [OPTIONS] COMMAND [ARGS]...

  RayLab: Reinforcement learning algorithms in RLlib.

Options:
  --help  Show this message and exit.

Commands:
  dashboard    Launch the experiment dashboard to monitor training progress.
  episodes     Launch the episode dashboard to monitor state and action...
  experiment   Launch a Tune experiment from a config file.
  find-best    Find the best experiment checkpoint as measured by a metric.
  info         View information about an agent's config parameters.
  rollout      Wrap `rllib rollout` with customized options.
  test-module  Launch dashboard to test generative models from a checkpoint.

Packages

The project is structured as follows

raylab
|-- agents            # Trainer and Policy classes
|-- cli               # Command line utilities
|-- envs              # Gym environment registry and utilities
|-- logger            # Tune loggers
|-- policy            # Extensions and customizations of RLlib's policy API
|   |-- losses        # RL loss functions
|   |-- modules       # PyTorch neural network modules for TorchPolicy
|-- pytorch           # PyTorch extensions
|-- utils             # miscellaneous utilities

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

raylab-0.11.19.tar.gz (147.5 kB view details)

Uploaded Source

Built Distribution

raylab-0.11.19-py3-none-any.whl (242.5 kB view details)

Uploaded Python 3

File details

Details for the file raylab-0.11.19.tar.gz.

File metadata

  • Download URL: raylab-0.11.19.tar.gz
  • Upload date:
  • Size: 147.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.8.5 Linux/5.3.0-1032-azure

File hashes

Hashes for raylab-0.11.19.tar.gz
Algorithm Hash digest
SHA256 baefecd4c4b24a26aba772b47d6c60a354c095d2c2cb6c1720e98aa6125d61ab
MD5 3648ad79b7e40f857646135992778a64
BLAKE2b-256 22d3fc41ddb5e27b2adcbcb6aae823230de26c1f74bf3b7ff4f54e1d8a6be1c0

See more details on using hashes here.

File details

Details for the file raylab-0.11.19-py3-none-any.whl.

File metadata

  • Download URL: raylab-0.11.19-py3-none-any.whl
  • Upload date:
  • Size: 242.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.8.5 Linux/5.3.0-1032-azure

File hashes

Hashes for raylab-0.11.19-py3-none-any.whl
Algorithm Hash digest
SHA256 1249e109141faafeeb9e6799d863af51b5781b5b9d27e5894fd539e24af0c1b1
MD5 ac70c81de0752e2008a8f9f210ef4646
BLAKE2b-256 b695b9fc2a256a3da5b8f8be209d2af25aafdc448236a8e74932d6bba6a8a344

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page