Skip to main content

Reinforcement learning algorithms in RLlib and PyTorch.

Project description

PyPI GitHub Workflow Status Dependabot GitHub CodeStyle

Reinforcement learning algorithms in RLlib and PyTorch.

Introduction

Raylab provides agents and environments to be used with a normal RLlib/Tune setup.

import ray
from ray import tune
import raylab

def main():
    raylab.register_all_agents()
    raylab.register_all_environments()
    ray.init()
    tune.run(
        "NAF",
        local_dir=...,
        stop={"timesteps_total": 100000},
        config={
            "env": "CartPoleSwingUp-v0",
            "exploration_config": {
                "type": tune.grid_search([
                    "raylab.utils.exploration.GaussianNoise",
                    "raylab.utils.exploration.ParameterNoise"
                ])
            }
            ...
        },
    )

if __name__ == "__main__":
    main()

One can then visualize the results using raylab dashboard

https://i.imgur.com/bVc6WC5.png

Installation

pip install raylab

Algorithms

Paper

Agent Name

Actor Critic using Kronecker-factored Trust Region

ACKTR

Trust Region Policy Optimization

TRPO

Normalized Advantage Function

NAF

Stochastic Value Gradients

SVG(inf)/SVG(1)/SoftSVG

Soft Actor-Critic

SoftAC

Streamlined Off-Policy (DDPG)

SOP

Model-Based Policy Optimization

MBPO

Model-based Action-Gradient-Estimator

MAGE

Command-line interface

For a high-level description of the available utilities, run raylab --help

Usage: raylab [OPTIONS] COMMAND [ARGS]...

  RayLab: Reinforcement learning algorithms in RLlib.

Options:
  --help  Show this message and exit.

Commands:
  dashboard    Launch the experiment dashboard to monitor training progress.
  episodes     Launch the episode dashboard to monitor state and action...
  experiment   Launch a Tune experiment from a config file.
  find-best    Find the best experiment checkpoint as measured by a metric.
  info         View information about an agent's config parameters.
  rollout      Wrap `rllib rollout` with customized options.
  test-module  Launch dashboard to test generative models from a checkpoint.

Packages

The project is structured as follows

raylab
|-- agents            # Trainer and Policy classes
|-- cli               # Command line utilities
|-- envs              # Gym environment registry and utilities
|-- logger            # Tune loggers
|-- policy            # Extensions and customizations of RLlib's policy API
|   |-- losses        # RL loss functions
|   |-- modules       # PyTorch neural network modules for TorchPolicy
|-- pytorch           # PyTorch extensions
|-- utils             # miscellaneous utilities

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

raylab-0.11.25.tar.gz (149.3 kB view details)

Uploaded Source

Built Distribution

raylab-0.11.25-py3-none-any.whl (244.6 kB view details)

Uploaded Python 3

File details

Details for the file raylab-0.11.25.tar.gz.

File metadata

  • Download URL: raylab-0.11.25.tar.gz
  • Upload date:
  • Size: 149.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.8.5 Linux/5.3.0-1032-azure

File hashes

Hashes for raylab-0.11.25.tar.gz
Algorithm Hash digest
SHA256 448117f338925a3645b44d5862dbb51b7aae3e6771d18b028ff12a543cfbe54e
MD5 c99811157ad28e938b9771069485a646
BLAKE2b-256 a91a08531634a3efdb7bb2c33ac5f9839e7b3d9a05993aef400b6459e26d6f6d

See more details on using hashes here.

File details

Details for the file raylab-0.11.25-py3-none-any.whl.

File metadata

  • Download URL: raylab-0.11.25-py3-none-any.whl
  • Upload date:
  • Size: 244.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.8.5 Linux/5.3.0-1032-azure

File hashes

Hashes for raylab-0.11.25-py3-none-any.whl
Algorithm Hash digest
SHA256 96ad15c176b4e3d171412983fb5060f833457670f440498b5cc3331af5a6b5f9
MD5 a4db260793e8ca75da497e1f19fb51c3
BLAKE2b-256 df0877561dddab147904af9faf10b39c64c900e5c5ce13c3ed5fe649ab339071

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page