Skip to main content

Python Implementation of Rigorous Coupled Wave Analysis

Project description

Build codecov docs PyPI version DOI

What this package can do

  • Calculate reflectance, transmittance, and scattering parameters from stacks of planar thin films
  • Simulate diffraction efficiencies, scattering matrices from 1D diffraction gratings
  • Simulate diffraction efficiencies, scattering matrices from 2D photonic crystals

Getting Started

Installation

The recommended way to install this software is with pip:

pip install rcwa

And that's it!

Hello World Program

To see a simple example, run:

python -m rcwa.examples.bragg_mirror

This should run an example with a 10-layer bragg mirror (also known as a dielectric mirror), which can have very high reflectance near its design wavelength, and output the reflectance as a function of wavelength, as seen below:

Bragg Mirror Plot

Features

  • Implements 1D Transfer Matrix Method for homogenous layers
  • Implements full rectangular 2D RCWA for periodic layers
  • Huge material database for n/k values in optical range built-in based on refractiveindex.info, including metals, plastics, glass, and ceramics
  • Easy to use class-based syntax
  • Integrated parameter sweeps of any simulation parameter: geometry, materials, wavelength, angle of incidence, etc.
  • Compute reflection and transmission spectra at arbitrary incidence and polarization
  • Compute spectroscopic ellipsometry curves
  • Compute reflected power, transmitted power, and S-parameters
  • Large, fast-to-run test suite
  • Extremely fast narrowband, rigorously correct simulations well suited for resonant devices
  • Built-in convergence testing

Example Uses

  • Compute reflected and transmitted power from a thin film stack
  • Determine resonant frequency of a VCSEL
  • Determine reflectance of a bragg mirror, on or off-axis
  • Find diffraction efficiencies for a 1D or 2D diffraction grating
  • Compute reflected power from a metallic mirror

Examples

All examples are in the examples/ directory in your locally installed rcwa package, or in rcwa/examples/ on this repository.

Reflection off Dispersive Materials

The below example demonstrates the reflection spectra you get reflecting off a bare surface of silicon, using the built-in materials database.

from rcwa import Material, Layer, LayerStack, Source, Solver, Plotter

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
startWavelength = 0.25
stopWavelength = 0.8
stepWavelength = 0.001

# Setup the source
source = Source(wavelength=startWavelength)

# Setup the materials and geometry
si = Material(name='Si')

# Setup the interface
reflectionLayer = Layer(n=1) # Free space
transmissionLayer = Layer(material=si)
stack = LayerStack(incident_layer=reflectionLayer, transmission_layer=transmissionLayer)

# Setup the solver
TMMSolver = Solver(stack, source, (1, 1))

# Setup and run the sweep
wavelengths = np.arange(startWavelength, stopWavelength + stepWavelength,
        stepWavelength)
results = TMMSolver.solve(wavelength=wavelengths)
Plotter.plotRTSpectra(TMMSolver.results)
plt.show()

Dispersive Si Plot

Source Wavelength / Angle Sweeps

import numpy as np
from rcwa import Material, Layer, LayerStack, Source, Solver, Plotter

# Setup the source
startWavelength = 0.25
stopWavelength = 0.8
stepWavelength = 0.02
wavelengths = np.arange(startWavelength, stopWavelength + stepWavelength,
        stepWavelength)
thetas = np.linspace(0, np.pi/4,10)

source = Source(wavelength=startWavelength)

thin_film = Layer(thickness=0.1, n=2)
substrate = Layer(n=4)
stack = LayerStack(thick_film, transmission_layer=substrate)

solver = Solver(stack, source)

results = solver.solve(wavelength=wavelengths, theta=thetas)
angles, wavelengths, R = results['theta'], results['wavelength'], results['RTot']

plt.plot(wavelengths, R)
plt.show()

Reflectance vs Wavelength with varying angle

Geometry Sweeps

Here, we set up a simulation with a rectangular grating on a substrate with a relative permittivity of 9, and a wavelength of 0.5 units (microns, meters, whatever you like!). This can be found in the grating_sweep.py example. In this example we are sweeping the thickness, but we could have swept the period or refractive index or permittivity.

from rcwa import Source, Layer, LayerStack, Crystal, Solver, RectangularGrating
import numpy as np
from matplotlib import pyplot as plt

reflection_layer = Layer(er=1.0, ur=1.0)
transmission_layer = Layer(er=9.0, ur=1.0)

wavelength = 0.5
source = Source(wavelength=wavelength)

N_harmonics = 11

grating_layer = RectangularGrating(period=2, thickness=0.5, n=4, n_void=1, nx=500)
layer_stack = LayerStack(grating_layer, incident_layer=reflection_layer, transmission_layer=transmission_layer)

solver_1d = Solver(layer_stack, source, N_harmonics)
results = solver_1d.solve((grating_layer, {'thickness': np.linspace(0.3, 0.5, 100)}))

plt.plot(results['thickness'], results['RTot'])
plt.show()

Reflectance vs Thickness

Documentation

This project is documented on Github Pages. For additional information, including downloading examples, you can view this project on github.

Author: Jordan Edmunds, UC Irvine Alumnus, UC Berkeley Ph.D. Student

Date Started: 2020/01/05

Frequently Asked Questions

Q: How do I tell the solver to use the Transfer Matrix Method or Rigorous Coupled Wave Analysis? A: Don't worry, it will figure it out for you.

License

This project is distributed under the MIT license.

Dependencies

Dependencies are comprehensively covered by the setup.py file, and the most recent set of dependencies can be found there. Currently, this requires numpy, scipy, pandas, matplotlib, and pyyaml. The documentation is built using Sphinx and hosted on readthedocs.io.

Acknowledgements / References

This work is based primarily on a set of lectures and associated course material by Professor Raymond Rumpf at the University of Texas, El Paso.

[1] Rakić, Aleksandar D., Aleksandra B. Djurišić, Jovan M. Elazar, and Marian L. Majewski. "Optical properties of metallic films for vertical-cavity optoelectronic devices." Applied optics 37, no. 22 (1998): 5271-5283.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rcwa-1.0.0.tar.gz (8.3 MB view details)

Uploaded Source

Built Distribution

rcwa-1.0.0-py3-none-any.whl (4.6 MB view details)

Uploaded Python 3

File details

Details for the file rcwa-1.0.0.tar.gz.

File metadata

  • Download URL: rcwa-1.0.0.tar.gz
  • Upload date:
  • Size: 8.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rcwa-1.0.0.tar.gz
Algorithm Hash digest
SHA256 9c4982d3df6352b16f14190fa3f1dc65e0087a207a1938345597760c17be5447
MD5 9e2a534be8073f569c2283d243338a3e
BLAKE2b-256 aaf7b645d34ccc172802a1009351872e29e7950d50ffe4e79af9816fe1f84a6f

See more details on using hashes here.

File details

Details for the file rcwa-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: rcwa-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for rcwa-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4611697b92c7546c99e218036363327cfb780bcdbc6ec01ae4f68142ff9bb572
MD5 d54f1c141b0f74066eaec17fdae6bf3a
BLAKE2b-256 ee553c7f5261679e0ff437eb9f1cae3d02f65b3c42bfd3f5e45918baf4e7c745

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page