Skip to main content

provides over 2264 datasets as pandas dataframe from various R packages

Project description

pyRdatasets

PyPi Version Anaconda-Server Badge Anaconda-Server Badge

pyRdatasets is a collection of 2293 datasets taken from https://github.com/vincentarelbundock/Rdatasets. The datasets were extracted from various R packages and stored as gzip packed pickle files in pandas DataFrame structure. A description to each dataset can be found here: http://vincentarelbundock.github.io/Rdatasets/datasets.html

All 2293 data records are already included in the package (no internet connection necessary), which has a size around 40 Mb.

Installation

pip install rdatasets

or

conda install conda-forge::rdatasets

Usage

>>> import rdatasets
>>> dataset = rdatasets.data("iris")
>>> dataset
     Sepal.Length  Sepal.Width  Petal.Length  Petal.Width    Species
0             5.1          3.5           1.4          0.2     setosa
1             4.9          3.0           1.4          0.2     setosa
2             4.7          3.2           1.3          0.2     setosa
3             4.6          3.1           1.5          0.2     setosa
4             5.0          3.6           1.4          0.2     setosa
..            ...          ...           ...          ...        ...
145           6.7          3.0           5.2          2.3  virginica
146           6.3          2.5           5.0          1.9  virginica
147           6.5          3.0           5.2          2.0  virginica
148           6.2          3.4           5.4          2.3  virginica
149           5.9          3.0           5.1          1.8  virginica

[150 rows x 5 columns]
>>> rdatasets.data("forecast", "co2")
Could not read forecast/co2
Which item did you mean: ['gas', 'gold', 'taylor', 'wineind', 'woolyrnq']?
>>> rdatasets.data("forecast", "gas")
            time  value
0    1956.000000   1709
1    1956.083333   1646
2    1956.166667   1794
3    1956.250000   1878
4    1956.333333   2173
..           ...    ...
471  1995.250000  49013
472  1995.333333  56624
473  1995.416667  61739
474  1995.500000  66600
475  1995.583333  60054

[476 rows x 2 columns]

The dataset description can be printed by:

import rdatasets
print(rdatasets.descr("iris"))

A summary of all datasets is available as DataFrame object:

import rdatasets
rdatasets.summary()

Thanks to

The archive of datasets distributed with R: of https://github.com/vincentarelbundock/Rdatasets

Pre-commit-config

Installation

$ pip install pre-commit

Using homebrew:

$ brew install pre-commit
$ pre-commit --version
pre-commit 2.10.0

Install the git hook scripts

$ pre-commit install

Run against all the files

pre-commit run --all-files
pre-commit run --show-diff-on-failure --color=always --all-files

Update package rev in pre-commit yaml

pre-commit autoupdate
pre-commit run --show-diff-on-failure --color=always --all-files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rdatasets-0.2.10.tar.gz (49.6 MB view details)

Uploaded Source

Built Distribution

rdatasets-0.2.10-py3-none-any.whl (50.1 MB view details)

Uploaded Python 3

File details

Details for the file rdatasets-0.2.10.tar.gz.

File metadata

  • Download URL: rdatasets-0.2.10.tar.gz
  • Upload date:
  • Size: 49.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for rdatasets-0.2.10.tar.gz
Algorithm Hash digest
SHA256 01e3d5bfeaef449e09ab2c4945450a9ce4c25be53df6783d42b6fec2420ea0fd
MD5 63f69f3315426d2f1b3c74e86723759c
BLAKE2b-256 4b09014821e844748a753112c5e7593ddecc4fc1ad114c52324cf0bbee33ca05

See more details on using hashes here.

File details

Details for the file rdatasets-0.2.10-py3-none-any.whl.

File metadata

  • Download URL: rdatasets-0.2.10-py3-none-any.whl
  • Upload date:
  • Size: 50.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for rdatasets-0.2.10-py3-none-any.whl
Algorithm Hash digest
SHA256 6fa2b311d8a30e059cba18a7b5b17e8aab7d16013d700f2754032e47718693a1
MD5 a5342feb21dea9f5663f19105f1a9da6
BLAKE2b-256 c0421572a692094df2631b07b6e0e196f1d2257583ea704d97470f01cf2c4f62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page