Skip to main content

Simple CLI tool to read tables via Pandas

Project description

ReadDataFrame

Simple CLI tool to read tables via Pandas

If you're one of those guys who prefers to work from the command line and need to often quickly check out what's saved in a file (without the hassle of having to touch your mouse ... ) this could be a useful tool.

Read DataFrame (rdf) provides a simple command-line interface to read tables. It essentially replaces

import pandas as pd

df = pd.read_table(<yourfile>)
print(df)

with

$ rdf <yourfile>

Installation

pip install read-dataframe

Usage

Basic usage

To read a table, take for example the classical iris dataset

$ rdf irisdataset.csv --sep ','
     sepal.length  sepal.width  petal.length  petal.width    variety
0             5.1          3.5           1.4          0.2     Setosa
1             4.9          3.0           1.4          0.2     Setosa
2             4.7          3.2           1.3          0.2     Setosa
3             4.6          3.1           1.5          0.2     Setosa
4             5.0          3.6           1.4          0.2     Setosa
..            ...          ...           ...          ...        ...
145           6.7          3.0           5.2          2.3  Virginica
146           6.3          2.5           5.0          1.9  Virginica
147           6.5          3.0           5.2          2.0  Virginica
148           6.2          3.4           5.4          2.3  Virginica
149           5.9          3.0           5.1          1.8  Virginica

[150 rows x 5 columns]

If for whatever reason you would like to set the column 'variety' to be the index column

$ rdf irisdataset.csv --sep ',' --index-col variety
           sepal.length  sepal.width  petal.length  petal.width
variety
Setosa              5.1          3.5           1.4          0.2
Setosa              4.9          3.0           1.4          0.2
Setosa              4.7          3.2           1.3          0.2
Setosa              4.6          3.1           1.5          0.2
Setosa              5.0          3.6           1.4          0.2
...                 ...          ...           ...          ...
Virginica           6.7          3.0           5.2          2.3
Virginica           6.3          2.5           5.0          1.9
Virginica           6.5          3.0           5.2          2.0
Virginica           6.2          3.4           5.4          2.3
Virginica           5.9          3.0           5.1          1.8

[150 rows x 4 columns]

Want to have all 150 rows printed out? Try:

$ rdf irisdataset.csv --sep ',' --display-nrows all 

More user interactive functions

Adding the option --list-columns would prompt the user to give the number of column headers to be printed out (from first to last column), and a similar option is available for the index via --list-indices

$ rdf irisdataset.csv --sep ',' --list-columns
     sepal.length  sepal.width  petal.length  petal.width    variety
0             5.1          3.5           1.4          0.2     Setosa
1             4.9          3.0           1.4          0.2     Setosa
2             4.7          3.2           1.3          0.2     Setosa
3             4.6          3.1           1.5          0.2     Setosa
4             5.0          3.6           1.4          0.2     Setosa
..            ...          ...           ...          ...        ...
145           6.7          3.0           5.2          2.3  Virginica
146           6.3          2.5           5.0          1.9  Virginica
147           6.5          3.0           5.2          2.0  Virginica
148           6.2          3.4           5.4          2.3  Virginica
149           5.9          3.0           5.1          1.8  Virginica

[150 rows x 5 columns]
Number of columns to list (<int> or 'all'): 2
sepal.length
sepal.width

To print the Series 'petal.length', add the --print-col option, which will similarly prompt the user for a column of interest. Since the 'petal.length' column is 2nd column (counting from 0), inputing 2 would give the same results. Also, a similar option is available for the index via --print-index

$ rdf irisdataset.csv --sep ',' --print-col
     sepal.length  sepal.width  petal.length  petal.width    variety
0             5.1          3.5           1.4          0.2     Setosa
1             4.9          3.0           1.4          0.2     Setosa
2             4.7          3.2           1.3          0.2     Setosa
3             4.6          3.1           1.5          0.2     Setosa
4             5.0          3.6           1.4          0.2     Setosa
..            ...          ...           ...          ...        ...
145           6.7          3.0           5.2          2.3  Virginica
146           6.3          2.5           5.0          1.9  Virginica
147           6.5          3.0           5.2          2.0  Virginica
148           6.2          3.4           5.4          2.3  Virginica
149           5.9          3.0           5.1          1.8  Virginica

[150 rows x 5 columns]
Column to print (<int> or <str>): petal.length
0      1.4
1      1.4
2      1.3
3      1.5
4      1.4
      ...
145    5.2
146    5.0
147    5.2
148    5.4
149    5.1
Name: petal.length, Length: 150, dtype: float64

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

read_dataframe-0.0.2.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

read_dataframe-0.0.2-py3-none-any.whl (4.8 kB view details)

Uploaded Python 3

File details

Details for the file read_dataframe-0.0.2.tar.gz.

File metadata

  • Download URL: read_dataframe-0.0.2.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for read_dataframe-0.0.2.tar.gz
Algorithm Hash digest
SHA256 d722e8025942540b351b3d22f03e2f252fd18c1b41837cb595355f000c2a562e
MD5 09ece2e096bee613487afda451c68285
BLAKE2b-256 ce5d56d0e699be1a6e118834e6a060fe0be9cb0257983383a01998125f6baa79

See more details on using hashes here.

File details

Details for the file read_dataframe-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for read_dataframe-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 959c21deb018bee8b21bd497308acf655dbe83b97ac8c446f63fefceac94c33f
MD5 7a6621d8fb2e26ef6b25f5514e7c6932
BLAKE2b-256 aa9c51e34e35bb3deebc7245d8261cf393a7a15d75bc66e8105750dc47a249a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page