Skip to main content

Automatically created environment for python package

Project description

readvmeoffline

we read asc data files from CAEN - created by gregory (or mc2). Create histograms, count zeroes etc...

Usage - brief version 2022

We try to update - with experiment 2021 12 03

./bin_readvme cut ~/09_DATA_ANALYSIS/20211203_54fe_nfs_ganil/Evaluation_1_fe40/run0055_211203_203227_1Fe40p3.asc 0 5 15

cuts channel 0 from 5sec to 15 sec

evacuttime

  • simple_read.eva_cut_time
    • calls general.readtable
    • calls general.select_channels
    • calls general.enhance_by_dtus...
    • call general.detect_zeroes for timewindow 4.2us

offers

Usage -brief version (OLD)

# convert asc to h5
read_vme_offline a2df run0022_20190719_070923.asc

# create spectra and table and ORG (text) file
read_vme_offline df2s run0014_20190718_165928.h5 --Emax 15200 -Ethres 5

# MASS CONVERT:
ls -1 *asc | xargs -n 1 -I III  read_vme_offline a2df III
ls -1 *h5 | xargs -n 1 -I III  read_vme_offline df2s  III  --Emax 15200 -Ethres 5

Installation

  • you can use ./pipall.py to get all python modules needed
  • since this is an exprerimental project, the recommended way to install is
    • pip3 install -e .
    • then you work on the code in local repo and run it globally in the same time
    • remove with pip3 uninstall project

Installation of ROOT

  • we start the manual with 6.22: https://root.cern/releases/release-62206/
  • the file root_v6.22.06.Linux-ubuntu20-x86_64-gcc9.3.tar.gz
  • create/unpack in in ~/root
  • run source ~/root/bin/thisroot/sh
  • go to ~/root/tutorials/pyroot and run python3 demo.py
  • something works, but there is a lot of problems

Connecting together

  • in the terminal, where source thisroot.sh was run try to call read_vme_offline
  • install

dependent module's details

rootnumpy

See http://scikit-hep.org/root_numpy/

  • create and FILL HISTOGRAMS from numpy array
  • an efficient interface between ROOT and NumPy
  • At the core of rootnumpy are powerful and flexible functions for converting ROOT TTrees into structured NumPy arrays
  • converting NumPy arrays back into ROOT TTrees
  • function for creating a random NumPy array by sampling a ROOT function or histogram:
from root_numpy import fill_hist
import numpy as np

# Fill a ROOT histogram from a NumPy array
hist = TH2D('name', 'title', 20, -3, 3, 20, -3, 3)
fill_hist(hist, np.random.randn(1000000, 2))
hist.Draw('LEGO2')

pylatex

library for creating and compiling LaTeX files or snippets

History

  • jm entered 2020 05 26
  • jm access 2021 02 19

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

read_vme_offline-0.2.29.tar.gz (37.2 kB view details)

Uploaded Source

File details

Details for the file read_vme_offline-0.2.29.tar.gz.

File metadata

  • Download URL: read_vme_offline-0.2.29.tar.gz
  • Upload date:
  • Size: 37.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.10

File hashes

Hashes for read_vme_offline-0.2.29.tar.gz
Algorithm Hash digest
SHA256 35158737909342229b6de513be4b60c89eb58372d24c57b30056c6dd4a942eb3
MD5 c5b77de263d207b0bb573177358b7cf8
BLAKE2b-256 49111afe5e6815fc10a5a20417edf4c1f79087b0f141b03926e5e07d9d528aa1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page