计算中文文本可读性指标
Project description
中文文本可读性指标 Chinese Readability Score
Evaluate the readability of Chinese text using LTP's word segmentation, part-of-speech analysis, and syntactic dependency analysis capabilities. 利用LTP分词、词性分析和句法依存分析能力,对中文文本的可读性进行评估。
The code is implemented based on several papers I know, with the scoring metric named after the first author of each paper. 代码根据我已知的几篇论文分别进行实现,评分指标名称即论文第一作者姓名。
Installation
It's easy using pip, just run: 直接使用 pip 命令安装即可:
$ pip install readability_cn
Usage
import readability_cn
readability = ChineseReadability()
# add new custom words
readability.add_custom_words(['日志易', '优特捷'])
# Compare readability metrics before and after file changes
# 对比文件变更前后的可读性指标
readability.analyze('old.adoc', 'new.adoc')
# use your own preprocess functions
import markdown
import re
with open(file_name, 'r', encoding='utf-8') as file:
markdown_content = file.read()
text = markdown.markdown(markdown_content)
text = re.sub(r'\n+', '\n', content)
... # do other remove and replace here
sentences = [sentence.strip() for sentence in readability.stnsplit.split(text) if sentence.strip()]
readability.wanglei_readability(sentences)
Use Custom Vocab
You can use the sentencepiece tool to extract a vocabulary from specific domain documents, referring to the custom_vocab.py
implementation in the examples
directory. Then merge it into the top-level vocabulary for use:
您可以通过 sentencepiece 工具,对特定领域文档提取词表,可以参考 examples
目录中的 custom_vocab.py
实现。然后合并到甲级词汇表中使用:
# Load the top 16% of custom vocabulary as common words in specific fields
# 可以加载自定义词表的前16%词汇作为特定领域的常用词汇
# Default to the vocabulary from Fudan University's computer science corpus
# 默认提供复旦大学计算机领域语料库的词表
readability._load_custom_vocab()
readability._load_custom_vocab("rizhiyi.vocab")
Note
-
The research in this field in China is mainly concentrated in the area of teaching Chinese as a foreign language. The research data primarily consists of a small number of textbook passages and Chinese proficiency test outlines. The coefficients obtained from polynomial linear regression fitting may not be effective for native speakers or technical documents. 国内进行相关研究的学者主要集中在对外汉语教育领域,研究数据集中为少量教材课文和汉语等级考试大纲等材料。多项式线性回归拟合的系数可能未必对母语用户、理工科文档等情况有效。
-
Some formulas are sensitive to the number of clauses. In this implementation, we simply use Chinese commas, semicolons, and colons for sentence splitting, without considering the mixed use of Chinese and English punctuation. 部分公式对分句数量敏感。本实现中简单使用中文的逗号、分号、冒号进行切分,并未考虑中英文标点混用的情况。
-
This implementation currently only provides preprocessing for asciidoc format text. For other formats, please refer to the
preprocess_asciidoc()
method to remove various markups. 本实现中暂时只提供了对 asciidoc 格式文本的预处理,其他格式请参照处理去除各种标记。
Thanks
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file readability_cn-0.1.4.tar.gz
.
File metadata
- Download URL: readability_cn-0.1.4.tar.gz
- Upload date:
- Size: 1.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1652486e93093339c06fb4109c5cfb3bffca820fcad9967f3b9a43fe72984dbb |
|
MD5 | 26b7f132039f0ae283dfaff9b47cc254 |
|
BLAKE2b-256 | cdfedc9bcd8d5993601354c017eb571edb55a8ca3c7e6e8acc60ef9196f5cc9a |
File details
Details for the file readability_cn-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: readability_cn-0.1.4-py3-none-any.whl
- Upload date:
- Size: 1.2 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cad2d0e04567764d002130f9ea77058f089d919a9782b648d197d57071a43922 |
|
MD5 | d3beb81e3fc5f45505b708eb7bfba5bc |
|
BLAKE2b-256 | 4cadb78575dcf8ae5cc4dfebe17b00f23fcd39f48b91bfa0bcd455a27d5a4776 |