Skip to main content

The API for readysignal.com

Project description

Ready Signal API - Python 3.6+

This library is designed to be a wrapper for the Ready Signal API: http://app.readysignal.com

Please direct all questions and/or recommendations to support@readysignal.com


Table of Contents

Signal ID Specific

Feature ID Specific



Installation

The Ready Signal API Python library can be found here: https://pypi.org/project/readysignal/

pip install readysignal

Usage

Your access token and signal ID can be found on your "Manage Signal" page within the Output information.

Your signal ID is also visible within the URL of the "Manage Signal" page:

...readysignal.com/signal/SIGNAL_ID/manage

Setup

import readysignal as rs

access_token = "your access token"
signal_id = 0  # this is your unique signal id number

Optional: Proxy URL

It is optional to include proxy URL(s) in your functions. The setup for proxy URL(s) is shown below, and it must be in a dictionary format. If username nand password are required too, an example is shown below:

# no username and password required
proxy_info = {
    "http": "http://your_proxy_address:your_proxy_port",
    "https": "https://your_proxy_address:your_proxy_port"
  }
# username and password required
  proxy_info2 = {
    "http": "http://username:password@your_proxy_address:your_proxy_port",
    "https": "https://username:password@your_proxy_address:your_proxy_port"
  }

If a proxy URL is needed, then it will be included as an argument in every function used. The parameter name and an example is shown below:

rs.list_signals(access_token, proxy_dict=proxy_info)

* Signal ID Specific *


List Signals

Using your access_token, you can list all signals and metadata that are associated with your Ready Signal account.

rs.list_signals(access_token)

Example Output

{'data': [{
    'id': 0, 
    'name': 'Signal Name', 
    'description': 'Signal Description', 
    'desired_geo_grain': 'Country', 
    'desired_time_grain': 'Month', 
    'start_at': '11/01/2019', 
    'end_at': '01/31/2020', 
    'created_at': '07/23/2020', 
    'updated_at': '07/28/2020', 
    'deleted_at': None, 
    'company': {
        'id': 0, 
        'chargebee_id': 'ID Hash', 
        'name': 'Company Name', 
        'plan_id': 0, 
        'plan_value_id': 0, 
        'subscription_status': 'active', 
        'created_at': '2020-07-23 13:20:17', 
        'updated_at': '2020-08-03 11:33:50', 
        'need_listining_webhook': 0, 
        'addon_users': None, 
        'notify_after_processing': 0
        }, 
    'user': {
        'id': 0, 
        'company_id': 0, 
        'name': 'Name', 
        'email': 'Email', 
        'email_verified_at': None, 
        'type': 'owner', 
        'active': 'yes', 
        'reactivate': 'no', 
        'created_at': '2020-07-23 13:20:17', 
        'updated_at': '2020-07-23 13:20:17', 
        'deleted_at': None
        }, 
    'industry': {
        'id': 1, 
        'name': 'Automotive', 
        'created_at': '2020-04-10 23:21:38', 
        'updated_at': '2020-04-10 23:21:38', 
        'deleted_at': None
        }, 
    'analysis_type': {
        'id': 3, 
        'name': 'Classification', 
        'created_at': '2020-04-10 23:21:45', 
        'updated_at': '2020-04-10 23:21:45', 
        'deleted_at': None
    }, 
    'output': {
        'json': 'https://app.readysignal.com/api/signals/0/output?format=json'}, 
        'links': {
        'self': 'https://app.readysignal.com/signal/0/manage', 
        'manage': 'https://app.readysignal.com/signal/0/manage'
        }
    },
    {
    'id': 1
    ...
    }
    ]
}

Signal Details

Using your access_token and your signal_id you can view the details of a specific signal.

# get signal details
rs.get_signal_details(access_token, signal_id)

Example Output

{'data': {
    'id': 0, 
    'name': 'Signal Name', 
    'description': 'Signal Description', 
    'desired_geo_grain': 'Country', 
    'desired_time_grain': 'Month', 
    'start_at': '11/01/2019', 
    'end_at': '01/31/2020', 
    'created_at': '07/23/2020', 
    'updated_at': '07/28/2020', 
    'deleted_at': None, 
    'company': {
        'id': 0, 
        'chargebee_id': 'ID Hash', 
        'name': 'Company Name', 
        'plan_id': 0, 
        'plan_value_id': 0, 
        'subscription_status': 'active', 
        'created_at': '2020-07-23 13:20:17', 
        'updated_at': '2020-08-03 11:33:50', 
        'need_listining_webhook': 0, 
        'addon_users': None, 
        'notify_after_processing': 0
        }, 
    'user': {
        'id': 0, 
        'company_id': 0, 
        'name': 'Name', 
        'email': 'Email', 
        'email_verified_at': None, 
        'type': 'owner', 
        'active': 'yes', 
        'reactivate': 'no', 
        'created_at': '2020-07-23 13:20:17', 
        'updated_at': '2020-07-23 13:20:17', 
        'deleted_at': None
        }, 
    'industry': {
        'id': 1, 
        'name': 'Automotive', 
        'created_at': '2020-04-10 23:21:38', 
        'updated_at': '2020-04-10 23:21:38', 
        'deleted_at': None
        }, 
    'analysis_type': {
        'id': 3, 
        'name': 'Classification', 
        'created_at': '2020-04-10 23:21:45', 
        'updated_at': '2020-04-10 23:21:45', 
        'deleted_at': None
    }, 
    'output': {
        'json': 'https://app.readysignal.com/api/signals/0/output?format=json'}, 
        'links': {
        'self': 'https://app.readysignal.com/signal/0/manage', 
        'manage': 'https://app.readysignal.com/signal/0/manage'
        }
    }
}

Signal Output

There are three different ways to receive your signal output:

  • JSON
  • Pandas DataFrame
  • CSV export

JSON

# get signal data as json
rs.get_signal(access_token, signal_id)

Example Output

{'current_page': 1, 
 'data': [
	{
		'start': '2019-11-01', 
		'end': '2019-11-30', 
		'country': 'United States of America', 
		'actual-snow-fall': '160205.00000000000000000000', 
		'resident-population-by-state': '9826013.22000000000000000000', 
		'actual-snow-cover': '3.56158109943317700000', 
		'population-total': '308745538.00000000000000000000', 
		'population-total-transformed': 17,571.156421818115497622280458798
	}, 
	{
		'start': '2019-12-01', 
		'end': '2019-12-31', 
		'country': 'United States of America', 
		'actual-snow-fall': '219691.00000000000000000000', 
		'resident-population-by-state': '10153546.99400000000000000000', 
		'actual-snow-cover': '8.28314041638492200000', 
		'population-total': '308745538.00000000000000000000', 
		'population-total-transformed': 17,571.156421818115497622280458798
	}, 
	{
		'start': '2020-01-01', 
		'end': '2020-01-31', 
		'country': 'United States of America', 
		'actual-snow-fall': '220869.00000000000000000000', 
		'resident-population-by-state': 10159386.99400000000000000000, 
		'actual-snow-cover': '10.69758409714073700000', 
		'population-total': '308745538.00000000000000000000', 
		'population-total-transformed': 17,571.156421818115497622280458798
	}
	], 
	'first_page_url': 'https://app.readysignal.com/api/signals/0/output?page=1', 
	'from': 1, 
	'last_page': 1, 
	'last_page_url': 'https://app.readysignal.com/api/signals/0/output?page=1', 
	'next_page_url': None, 
	'path': 'https://app.readysignal.com/api/signals/0/output', 
	'per_page': 1000, 
	'prev_page_url': None, 
	'to': 3, 
	'total': 3}

Pandas DataFrame

# get signal data as Pandas DataFrame
rs.get_signal_pandas(access_token, signal_id)

Example Output

        start  ... population-total-transformed
0  2019-11-01  ... 17,571.156421818115497622280458798
1  2019-12-01  ... 18,109.798447234298274239287429023
2  2020-01-01  ... 18,732.472983479821748127047902849

Export to CSV

# send signal data to csv file
file_name = "test_signal.csv"
rs.signal_to_csv(access_token, signal_id, file_name)

Delete Signal

USE WITH CAUTION

Use your access_token and signal_id to delete a signal

rs.delete_signal(access_token, signal_id)

Auto Discover Feature

Creates a signal using your own data and the Auto Discover feature. Please check Ready Signal site for tips on how to format your data. Currently only available at the "State" or "Country" geo grain and the “Month” or “Day” time grain. Use a file name OR Pandas DataFrame. Set create_custom_features=0 to prevent Ready Signal from storing the input target data for future use.

rs.auto_discover(access_token, geo_grain, date_grain, filename=None, df=None, create_custom_features=1)

* Feature ID Specific*

Syntax

A note on parameter syntax:

  • access_token: a string of users access token
  • bank_name: a string of the country name of the bank
  • feature: a list containing the feature(s) to use. Regardless of if it is just 1 feature or many, it MUST be put in a list
  • start_date: a string in the format of 'YYY-MM-DD'
  • end_date: a string in the format of 'YYY-MM-DD'

Available Features List

Using your access_token and bank_name, you can view all the features and an overview of their data that can be used with the feature specific functions.

rs.get_features_list(access_token, bank_name)

Example Output

{'data': [{'feature_id': 317,
   'slug_name': 'Bonos (0 - 3 years) Maturity at 12/07/2023',
   'feature_name': 'Bonos (0 - 3 years) Maturity at 12/07/2023',
   'product_name': 'Bonos',
   'provider_name': 'Bank Of Mexico',
   'geo_grain': 'Country',
   'geo_grain_delimitation': 'MEXICO',
   'date_grain': 'Day'},
  {'feature_id': 318,
   'slug_name': 'Bonos (0 - 3 years) Maturity at 09/05/2024',
   'feature_name': 'Bonos (0 - 3 years) Maturity at 09/05/2024',
   'product_name': 'Bonos',
   'provider_name': 'Bank Of Mexico',
   'geo_grain': 'Country',
   'geo_grain_delimitation': 'MEXICO',
   'date_grain': 'Day'},
   {'feature_id': 319
   ...
   }
]
}

Show Feature(s) Data

Using your access_token, bank_name, and a feature list containing the feature id(s), see an overview of the data for those specific features.
Reminder: Regardless of the number of features (1 or many), they must be in a list.

feat_list = [317, 318]
rs.show_feature(access_token, bank_name, feat_list)

Example Output

{317: {'feature_id': 317,
  'feature_name': 'Bonos (0 - 3 years) Maturity at 12/07/2023',
  'product_name': 'Bonos',
  'provider_name': 'Bank Of Mexico',
  'geo_grain': 'Country',
  'date_grain': 'Day',
  'data_notes': None,
  'units': 'Millions of pesos',
  'available_through': '2023-09-26',
  'published_at': None},
 318: {'feature_id': 318,
  'feature_name': 'Bonos (0 - 3 years) Maturity at 09/05/2024',
  'product_name': 'Bonos',
  'provider_name': 'Bank Of Mexico',
  'geo_grain': 'Country',
  'date_grain': 'Day',
  'data_notes': None,
  'units': 'Millions of pesos',
  'available_through': '2023-09-26',
  'published_at': None}}

Show Feature(s) Detailed Data

Using your access_token, bank_name, and a feature list containing the feature id(s), see in depth data for those specific features.

feat_list = [317]
rs.show_feature_detailed(access_token, bank_name, feat_list)

Example Output

{317: {'name': 'Bonos (0 - 3 years) Maturity at 12/07/2023',
  'short_name': 'Bonos (0 - 3 years) Maturity at 12/07/2023',
  'geo_grain': 'Country',
  'geo_grain_label': 'COUNTRY',
  'geo_grain_delimitation': 'MEXICO',
  'date_grain': 'Day',
  'date_grain_label': 'Daily',
  'licence': 'Public Domain',
  'units': 'Millions of pesos',
  'reporting_lag': '1 Day',
  'first_date': None,
  'description': '',
  'citation': None,
  'why_use': None,
  'state_lvl_data_set_exist': 'No',
  'is_state_lvl_the_same': 'No',
  'allow_grain_transformation_by_date': 'Yes',
  'allow_grain_transformation_by_population': 'No',
  'parent_feature_id': None,
  'product': {'id': 104,
   'name': 'Bonos',
   'created_at': None,
   'updated_at': None,
   'deleted_at': None,
   'provider': {'id': 41,
    'name': 'Bank Of Mexico',
    'publisher_id': 7,
    'created_at': '2022-07-14 14:06:07',
    'updated_at': '2022-07-14 14:06:07',
    'deleted_at': None}},
  'categories': [{'id': 1,
    'name': 'Economic',
    'created_at': '2020-04-10T23:22:58.000000Z',
    'updated_at': '2020-04-10T23:22:58.000000Z',
    'deleted_at': None,
    'sub_categories': [{'id': 1,
      'name': 'Banking',
      'category_id': 1,
      'created_at': '2020-04-10 23:22:58',
      'updated_at': '2020-04-10 23:22:58',
      'deleted_at': None},
     {'id': 2,
      ...
     }
     {'id': 18,
      'name': 'Interest Rates',
      'category_id': 1,
      'created_at': '2020-04-10 23:23:06',
      'updated_at': '2020-04-10 23:23:06',
      'deleted_at': None}]}],
  'deleted_at': None,
  'created_at': '2023-07-10T17:40:50.000000Z',
  'updated_at': '2023-09-19T18:02:05.000000Z'}
  }

Feature Data Outputs

There are two different ways to receive your feature(s) data:

  • JSON
  • Pandas DataFrame

You will need your access_token, bank_name, feature list of feature ids along with a start_date and end_date indicating the date range of the features.
Reminder: Regardless of the number of features (1 or many), they must be in a list.
Reminder: start_date and end_date must be in the format of 'YYY-MM-DD'.

JSON

# get feature data as json
feat_list = [317]
start_date = '2021-01-01'
end_date = '2021-12-31'
rs.get_feature_data(access_token, bank_name, feat_list, start_date, end_date)

Example Output

{'data': [{'Trade Date': '01/04/2021',
   'Security Type': 'Bonos',
   'Maturity Date': '07 dic 2023',
   'Volume': '0.00000000000000000000',
   'Maturity Bucket': '0_3',
   'Last Updated': '09/26/2023'},
  {'Trade Date': '01/05/2021',
   'Security Type': 'Bonos',
   'Maturity Date': '07 dic 2023',
   'Volume': '100.00000000000000000000',
   'Maturity Bucket': '0_3',
   'Last Updated': '09/26/2023'},
   ...
   {'Trade Date': '12/31/2021', 
   'Security Type': 'Bonos', 
   'Maturity Date': '07 dic 2023', 
   'Volume': '0.00000000000000000000', 
   'Maturity Bucket': '0_3', 
   'Last Updated': '09/26/2023'}
   ]
}

Pandas DataFrame

# get feature data as Pandas DataFrame
rs.get_feature_data_pandas(access_token, bank_name, feat_list, start_date, end_date)

Example

   Trade Date  ... Last Updated
0  01/04/2021  ... 09/26/2023
1  01/05/2021  ... 09/26/2023
2  01/06/2021  ... 09/26/2023

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

readysignal-1.4.1.tar.gz (12.8 kB view details)

Uploaded Source

Built Distribution

readysignal-1.4.1-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file readysignal-1.4.1.tar.gz.

File metadata

  • Download URL: readysignal-1.4.1.tar.gz
  • Upload date:
  • Size: 12.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for readysignal-1.4.1.tar.gz
Algorithm Hash digest
SHA256 fb734df90d6c98ee41892deebbdf296797b8d1674f05f8fec6b62419c13e45fd
MD5 e88757d1f6ac2f903fcd867a76772c24
BLAKE2b-256 5074dabb00c99e95520ed13870758eeba7b01e8e17815d94674e500376dd3fee

See more details on using hashes here.

File details

Details for the file readysignal-1.4.1-py3-none-any.whl.

File metadata

  • Download URL: readysignal-1.4.1-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for readysignal-1.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4c54a0435e8ef72efa21ef1ec3ebfab713adf5891c0f5c062f191e96b3f0e416
MD5 365985e234f7e39b27bb7501f9af1d36
BLAKE2b-256 96775687f860bc60694ecf8e825eacd8016aba65f5f3f457fa90c0a2dce09f51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page