Skip to main content

Robots that learn to interact with the environment autonomously

Project description

real-robots

https://travis-ci.com/AIcrowd/real_robots.svg?branch=master

demo0 demo1 demo1

Robots that learn to interact with the environment autonomously

Installation

pip install -U real_robots

If everything went well, then you should be able to run :

real-robots-demo

and it should (eventually) open up a small window with a little robotic arm doing random stuff.

Usage

import gym
import numpy as np
import time
import real_robots
from real_robots.policy import BasePolicy

class RandomPolicy(BasePolicy):
    def __init__(self, action_space):
        self.action_space = action_space
        self.action = action_space.sample()

    def step(self, observation, reward, done):
        if np.random.rand() < 0.05:
            self.action = self.action_space.sample()
        return self.action

env = gym.make("REALRobot2020-R2J3-v0")
pi = RandomPolicy(env.action_space)
env.render("human")

observation = env.reset()
reward, done = 0, False
for t in range(40):    
    action = pi.step(observation, reward, done)
    observation, reward, done, info = env.step(action)    

Local Evaluation

import gym
import numpy as np
import real_robots
from real_robots.policy import BasePolicy

class RandomPolicy(BasePolicy):
    def __init__(self, action_space):
        self.action_space = action_space
        self.action = action_space.sample()

    def step(self, observation, reward, done):
        if np.random.rand() < 0.05:
            self.action = self.action_space.sample()
        return self.action

result, detailed_scores = real_robots.evaluate(
                RandomPolicy,
                environment='R1',
                action_type='macro_action',
                n_objects=1,
                intrinsic_timesteps=1e3,
                extrinsic_timesteps=1e3,
                extrinsic_trials=3,
                visualize=False,
                goals_dataset_path='goals-REAL2020-s2020-50-1.npy.npz'
            )
# NOTE : You can find goals-REAL2020-s2020-50-1.npy.npz file in the REAL2020 Starter Kit repository
# or you can generate one using the real-robots-generate-goals command.
#
print(result)
# {'score_REAL2020': 0.06529471503519801, 'score_total': 0.06529471503519801}
print(detailed_scores)
# {'REAL2020': [0.00024387094790936833, 0.19553060745741896, 0.00010966670026571288]}

See also our FAQ.

  • Free software: MIT license

Features

The REALRobot environment is a standard gym environment.
It includes a 7DoF kuka arm with a 2DoF gripper, a table with 3 objects on it and a camera looking at the table from the top. For more info on the environment see environment.md.

Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

real_robots-0.1.21.tar.gz (9.1 MB view details)

Uploaded Source

Built Distribution

real_robots-0.1.21-py2.py3-none-any.whl (18.2 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file real_robots-0.1.21.tar.gz.

File metadata

  • Download URL: real_robots-0.1.21.tar.gz
  • Upload date:
  • Size: 9.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.9

File hashes

Hashes for real_robots-0.1.21.tar.gz
Algorithm Hash digest
SHA256 7e94526bcb70a23e53ca85f3686744356029c0a6ff8c226d9a76d8d59e81bec9
MD5 a9d732b4380d325e6d0665385768c440
BLAKE2b-256 4ed05d04f339d4d8b6602be5396bf5f074cc6fdb7b5688fd8603f1924bf13312

See more details on using hashes here.

File details

Details for the file real_robots-0.1.21-py2.py3-none-any.whl.

File metadata

  • Download URL: real_robots-0.1.21-py2.py3-none-any.whl
  • Upload date:
  • Size: 18.2 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.9

File hashes

Hashes for real_robots-0.1.21-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ead227d8025eced524629c19f6736ec251ec4a163174ac03cf8989efad0717ac
MD5 2290f89262f6560cca78b537c51c74f1
BLAKE2b-256 23c9a63dbad03debd9289102f1acda1691ff98ae2290b86e2a3fbad7ce0fec2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page