No project description provided
Project description
realcugan-ncnn-py
Python Binding for realcugan-ncnn-vulkan with PyBind11
RealCUGAN is a Generative Adversarial Network (GAN) based model for image super-resolution (SR). This wrapper provides an easy-to-use interface for running the pre-trained RealCUGAN model.
Current building status matrix
Usage
To use this package, simply install it via pip:
pip install realcugan-ncnn-py
For Linux user:
apt install -y libomp5 libvulkan-dev
Then, import the Realcugan class from the package:
from realcugan_ncnn_py import Realcugan
To initialize the model:
realcugan = Realcugan(gpuid: int = 0, tta_mode: bool = False, num_threads: int = 1, noise: int = -1, scale: int = 2, tilesize: int = 0, syncgap: int = 3, model: str = "models-se")
# model can be "models-se" or "models-pro" or "models-nose"
# or an absolute path to the models' directory
Here, gpuid specifies the GPU device to use (-1 means use CPU), tta_mode enables test-time augmentation, num_threads sets the number of threads for processing, noise specifies the level of noise to apply to the image (-1 to 3), scale is the scaling factor for super-resolution (1 to 4), tilesize specifies the tile size for processing (0 or >= 32), syncgap is the sync gap mode, and model specifies the name of the pre-trained model to use.
Once the model is initialized, you can use the upscale method to super-resolve your images:
Pillow
from PIL import Image
realcugan = Realcugan(gpuid=0, scale=2, noise=3)
with Image.open("input.jpg") as image:
image = realcugan.process_pil(image)
image.save("output.jpg", quality=95)
opencv-python
import cv2
realcugan = Realcugan(gpuid=0, scale=2, noise=3)
image = cv2.imdecode(np.fromfile("input.jpg", dtype=np.uint8), cv2.IMREAD_COLOR)
image = realcugan.process_cv2(image)
cv2.imencode(".jpg", image)[1].tofile("output_cv2.jpg")
ffmpeg
import subprocess as sp
# your ffmpeg parameters
command_out = [FFMPEG_BIN,........]
command_in = [FFMPEG_BIN,........]
pipe_out = sp.Popen(command_out, stdout=sp.PIPE, bufsize=10 ** 8)
pipe_in = sp.Popen(command_in, stdin=sp.PIPE)
realcugan = Realcugan(gpuid=0, scale=2, noise=3)
while True:
raw_image = pipe_out.stdout.read(src_width * src_height * 3)
if not raw_image:
break
raw_image = realcugan.process_bytes(raw_image, src_width, src_height, 3)
pipe_in.stdin.write(raw_image)
Build
The project just only been tested in Ubuntu 18+ and Debian 9+ environments on Linux, so if the project does not work on your system, please try building it.
References
The following references were used in the development of this project:
nihui/realcugan-ncnn-vulkan - This project was the main inspiration for our work. It provided the core implementation of the Real-CUGAN algorithm using the ncnn and Vulkan libraries.
Real-CUGAN - Real-CUGAN is an AI super resolution model for anime images, trained in a million scale anime dataset, using the same architecture as Waifu2x-CUNet.
media2x/realcugan-ncnn-vulkan-python - This project was used as a reference for implementing the wrapper. Special thanks to the original author for sharing the code.
ncnn - ncnn is a high-performance neural network inference framework developed by Tencent AI Lab.
License
This project is licensed under the BSD 3-Clause - see the LICENSE file for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file realcugan_ncnn_py-2.0.0-cp312-none-win_amd64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp312-none-win_amd64.whl
- Upload date:
- Size: 44.9 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6567dcb1e00994d8ac7dec4e88abe0d0baf045c5e6093c70ed942eb585607ddc |
|
MD5 | 480d3bb8bf39b38d4e8b1cc09f5b563f |
|
BLAKE2b-256 | 8bf19d111be58d161ef898561dd966c694b125286b77c07761d20f5c8a60553d |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp312-none-manylinux1_x86_64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp312-none-manylinux1_x86_64.whl
- Upload date:
- Size: 46.7 MB
- Tags: CPython 3.12
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f576b86ba4311d245257ffc37997d6d0ece68dbfafbe166011a179e86b333ad2 |
|
MD5 | 2b1d6c017879a5ad99cfacf0032a2e45 |
|
BLAKE2b-256 | c4be880021f75ecd08fe5d263cd6cf42282d183e38907894b17bb767170170e0 |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp312-none-macosx_11_0_universal2.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp312-none-macosx_11_0_universal2.whl
- Upload date:
- Size: 51.8 MB
- Tags: CPython 3.12, macOS 11.0+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d4426769a7079f6cb2276eeddb0e18a0f77a3d0c3e02426b75fbf2ad15e4703a |
|
MD5 | 23ee2ed39fdfb84678cd8df43747ca34 |
|
BLAKE2b-256 | 4a7861f716a4c244950b10fa0f191438d82529dc2284c7beb4b969f20dcb8114 |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp311-none-win_amd64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp311-none-win_amd64.whl
- Upload date:
- Size: 44.9 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 538cb74c8d2fcdc014f234aab693afcf0aa2eab3efd85dfb71be273f1e2654d6 |
|
MD5 | 98fb84590941c348b09873c04a643724 |
|
BLAKE2b-256 | 1a605309933d6e6d30ad9d065081e7652b7b58842bf8d91a894e7534d60d5e72 |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp311-none-manylinux1_x86_64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp311-none-manylinux1_x86_64.whl
- Upload date:
- Size: 46.7 MB
- Tags: CPython 3.11
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 223525ee750d5cf7679213a5891b16dbf8ffe2f84e8a28b6e5e7b5ddddace60e |
|
MD5 | cfe02fa11c930d6d51890ff375d480e5 |
|
BLAKE2b-256 | 4866fa0ed0c0ea1f5f8f492b1df5ae342ea959fbc505a08cfc43db1c3e8b0253 |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp311-none-macosx_11_0_universal2.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp311-none-macosx_11_0_universal2.whl
- Upload date:
- Size: 51.8 MB
- Tags: CPython 3.11, macOS 11.0+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 255d612006d06579ce67b4943d207650acd66e9b677abb8b42749f91179a0448 |
|
MD5 | 8ce8bfd925341819e5eb6c4e2b20587f |
|
BLAKE2b-256 | 9b911223b0eeebd1513c4738129e860625da8fb5be6e1d813a930864ffa3718d |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp310-none-win_amd64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp310-none-win_amd64.whl
- Upload date:
- Size: 44.9 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d6af5d90b340617148d15afd004ec31fa32247e93d7132e9a6decf656e0ec355 |
|
MD5 | 2c517a53dcbc930db0d437a7ee622a60 |
|
BLAKE2b-256 | 24b799df00b707df08e733ab3ffbc0af841ed90d24b0be93a441baea461805e2 |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp310-none-manylinux1_x86_64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp310-none-manylinux1_x86_64.whl
- Upload date:
- Size: 46.7 MB
- Tags: CPython 3.10
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66891b44a8a09936276d5f629a59f14d7f136289989549b66dfabbb5c8c214c8 |
|
MD5 | fd08c3dbe3074fc8048be7e1d8d4632b |
|
BLAKE2b-256 | 396bac1dd516fed8f107aa1a333423e2f5405cc1cf7746966b484edf3460580b |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp310-none-macosx_11_0_universal2.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp310-none-macosx_11_0_universal2.whl
- Upload date:
- Size: 51.8 MB
- Tags: CPython 3.10, macOS 11.0+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1ed7ee33daa114fb649378097be3a3b246e563a96a2a66569f24fbbe096ac55e |
|
MD5 | c93c9b89fb5e0041c2c2b1ccd7d68f41 |
|
BLAKE2b-256 | e9396355d66c8ec35df5d4abf7899aa4594b6c030a5cc5a0fa3519fd469f4043 |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp39-none-win_amd64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp39-none-win_amd64.whl
- Upload date:
- Size: 44.9 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8bb1f8da181f0fceacb8287b2e38c092c740bb9d6a6909248b9c87c8b69c93c9 |
|
MD5 | f5cd4c1efe761fa126b9f4ef7739d590 |
|
BLAKE2b-256 | f153a1fd0f9769cd315b1fa1dd0fd5fe9207e429fcf506ec026006a0f77b357f |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp39-none-manylinux1_x86_64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp39-none-manylinux1_x86_64.whl
- Upload date:
- Size: 46.7 MB
- Tags: CPython 3.9
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c603582092b137951cbe84dc7e749d53c81326fbdce879fdf9739d2c4cf014fa |
|
MD5 | bbf808c5488928df64940b9db5a701ce |
|
BLAKE2b-256 | 98f7e10d4e375b34aa20a730875517ab687a33a6d5ec64934d1a54ade16a5c53 |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp39-none-macosx_11_0_universal2.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp39-none-macosx_11_0_universal2.whl
- Upload date:
- Size: 51.8 MB
- Tags: CPython 3.9, macOS 11.0+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c05dd7f1f7f5cb9fbd66efc5ab9606f9a3fef352dd9eaa37b9a95030af4cba2f |
|
MD5 | 6c46e9129d127cfc09b5bafb33428c15 |
|
BLAKE2b-256 | 63add0100c14bd673e577c9587ce78ca3238ca40ce9ecdf2124a433e5a373859 |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp38-none-win_amd64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp38-none-win_amd64.whl
- Upload date:
- Size: 44.9 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65d56be23ad7db26ea9cbbbd73990eaa44a43758a657b620be490177c4874eeb |
|
MD5 | 69f09450453530f9978032ae9ebf3c84 |
|
BLAKE2b-256 | 531a4ee6dde1279eb86542935881d26c6e0375d4e4455867d453c34718ebbf1b |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp38-none-manylinux1_x86_64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp38-none-manylinux1_x86_64.whl
- Upload date:
- Size: 46.7 MB
- Tags: CPython 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac02a50e8cd2332d7f9f3867fc748af03af3d78a47500e9c8b68588c5d840775 |
|
MD5 | 00a5b5c6cc6e7834107c5f8e1e79886d |
|
BLAKE2b-256 | 8c3fafc74ce3561bb0e1a6fb902dce1a4d892df5368dca7b42d74d0e6546e041 |
File details
Details for the file realcugan_ncnn_py-2.0.0-cp38-none-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: realcugan_ncnn_py-2.0.0-cp38-none-macosx_10_15_x86_64.whl
- Upload date:
- Size: 51.8 MB
- Tags: CPython 3.8, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c38688c1dc15f28e2eebb6375861fdebb4fd913958d80ccbf2eb415d3e578f19 |
|
MD5 | a90379a86d214ce385f6e19bacb33368 |
|
BLAKE2b-256 | 102c78f5ca06e446458688e52a15493e992d7ef8f22c79cc49c7a3d98c15d3e8 |